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Information Systems

Information processing for certain purpose;
Mostly noiseless (wireline) & contents are independent (files or bits);
Not including noisy channels (e.g., Li TIT-23).
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Fundamental Limits of Information Systems

Fundamental limits: hard limit, regardless of the engineering
design

Usually obtained through some counting arguments: in
information theory, we use entropy to count.
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Information Theoretic Limits: Conventional Approach

An art more than a science:
1 Develop a good understanding of the engineering problem;
2 Chain of inequalities: translate the understanding +

trial-and-error.

⇓
Heavy reliance on humans: human ingenuity and diligence
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Information Theoretic Limits: New Approaches?

Question: how can we reduce the human factors?

An optimization view: find the “best” combination of information inequalities

⇓

Idea: computers to do some or all the work?

⇑

A key driver: development in optimization software and computer hardware.
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A Computational Approach for the Fundamental Limits

Goal: To solve real difficult research problems and obtain new engineering ideas.
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A Hitchhiker’s Guide to Manufacturing Research Papers

Goal: To solve real difficult research problems and obtain new engineering ideas.
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The Mathematical Foundation: Yeung’s Entropy Linear Program
Is a certain information inequality true? “Yes or can’t-determine”

Example
With three random variables Y1,Y2,Y3, does the inequality H(Y1) ≥ H(Y2) hold?

x001 ≜ H(Y1), x010 ≜ H(Y2), x100 ≜ H(Y2), x011 ≜ H(Y1,Y2),
x110 ≜ H(Y2,Y3), x101 ≜ H(Y1,Y3), x111 ≜ H(Y1,Y2,Y3).

We can consider the optimization problem:

minimize: x001 − x010

subject to: x111 − x001 ≥ 0, x111 − x010 ≥ 0, x111 − x100 ≥ 0
x001 + x010 − x011 ≥ 0, ... ...
x011 + x110 − x111 − x010 ≥ 0.

This looks weird, but let’s translate: x001 + x010 − x011 ⇔ H(Y1) + H(Y2) − H(Y1,Y2) = I(Y1; Y2) ≥ 0.
June 2024 9 / 72
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Software and Libraries
ITIP, Xitip, and Citip libraries (1997, 2007, 2020), which were used to

Study the entropic regions;
Verify simple conjectured inequalities.
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Proving Inequalities → Converse for Coding Problems

Example
A source Y1 of unit rate, is encoded into Y2 and Y3 (maybe with additional randomness) of
equal rates, that can be used to jointly recover Y1. What is the minimum coding rate of Y2?

Translation: H(Y1) = 1, H(Y2) = H(Y3), H(Y1|Y2,Y3) = 0, lower bound on H(Y2)?

minimize: x010

subject to: x001 = 1, x010 = x100, x111 − x110 = 0

Are these all the constraints? Should also include the elemental inequalities:

subject also to: x111 − x001 ≥ 0, x111 − x010 ≥ 0, x111 − x100 ≥ 0
x001 + x010 − x011 ≥ 0, ...
x011 + x110 − x111 − x010 ≥ 0.
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Why Are We Still Here?

Exponential in the number of random variables: storage and computation constrained
n random variables: 2n − 1 LP variables and n +

(n
2
)
2n−2 LP constraints.
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Symmetry-Reduced Entropy LP

Motivation:
In regenerating code, the simplest non-trivial case had at
least 16 random variables;
Translate to roughly 2 million inequality constraints! Too
complex /
However, the problem is highly symmetric.

Therefore, we built a customized approach (T. JSAC-14):
1 Symmetry and other factors to reduce LP;
2 Compute the outer bounds;
3 LP dual to generate human-readable proofs.

Node 1

Raw data

B-units

Node 2

Node 3

Node n

.
.
.

.
.
.

α
α
α

α
Node 4

α

Node 1'

β

β

β
β
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First Setting: The Regenerating Code Problem

Dimakis et al. Infocom-07
(n, k) property: any k in n nodes can recover the
B-units of total data;
Node of size α;

Repair to access any d remaining nodes for β each.

Node 1

Raw data

B-units

Node 2

Node 3

Node n

.
.
.

.
.
.

α
α
α

α
Node 4

α
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Node 1
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B-units

Node 2

Node 3

Node n

.
.
.

.
.
.

α
α
α

α
Node 4

α

Node 1'

β

β

β
β

Optimal tradeoff of {(ᾱ, β̄)} for fixed (n, k, d)?
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Bounds and Implication

Exact-repair optimal tradeoff ̸= Functional-repair optimal tradeoff?

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.15

0.2

0.25

0.3

0.35

0.4

0.45

(1/3, 1/3)

(2/5, 1/5) (1/2, 1/6)

(3/8, 1/4)

ᾱ

β̄

 

 

func−repair optimal tradeoff
exact−repair optimal tradeoff

Key: establish an outer bound for exact-repair codes.

June 2024 16 / 72



Bounds and Implication

Exact-repair optimal tradeoff ̸= Functional-repair optimal tradeoff?

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.15

0.2

0.25

0.3

0.35

0.4

0.45

(1/3, 1/3)

(2/5, 1/5) (1/2, 1/6)

(3/8, 1/4)

ᾱ
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Translation: Regenerating Codes (n, k , d) = (4, 3, 3)

Define random variables and write the conditions

M
2
W

1
W

3
W

4
W

2
W

2,1
S

2,3
S

2,4
S

M,W1,W2,W3,W4

S1,2, S1,3,S1,4

S2,1, S2,3,S2,4

S3,1, S3,2,S3,4

S4,1, S4,2,S4,3

H(M) = B, H(Wi) ≤ α, H(Si ,j) ≤ β,

H(Si ,j |Wi) = 0, H(Wi |{Sj,i , j ̸= i}) = 0, H(Wi ,Wj ,Wk) = B
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The Main Idea: Symmetry Reduction

Proposition (Informal)
There is no loss in using (considering) only symmetric codes.

Intuition: storage nodes have the same role, so permutation does not jeopardize performance.

Symmetry reduction, e.g.,

H(W1,W2, S1,3, S2,4) = H(W2,W3, S2,4, S3,1).

Other reductions:

H(Wi ,Wj ,Wk) = ... = H({Wi}, {Si ,j}) = B.

M
2
W

1
W

3
W

4
W

2
W

2,1
S

2,3
S

2,4
S

Many joint entropy terms have the same values
⇓

No need to represent them using different variables in LP!
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The Reduced LP

Use these reductions to remove redundant variables and constraints in LP

LP with 65535 variables + 2 million constraints
⇓

LP with 176 variables + 6152 constraints

Now the LP is small
Trace out the boundary with some discrete (α, β) pairs;

▶ From this we identify 4α+ 6β ≥ 3B
Only numerical result: not good for understanding the problem;
Note: There are not minimal; see Guo et al. 2024.
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Explicit Proof: LP Dual to the Rescue

What is an explicit proof?
Conventionally and on the first sight: a (mysterious) chain of inequalities

▶ Analogy: want to show 3a − d ≥ 0, but only know

a +b −c ≥0
−4b +c +d ≥0

b +2c −2d ≥0

More fundamentally: a linear combination of known inequalities;
4α+ 6β ≥ 3B is such a linear combination;
But the LP solver must have already found this combination.
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▶ Analogy: want to show 3a − d ≥ 0, but only know

3a +3b −3c ≥0
−4b +c +d ≥0

b +2c −2d ≥0

More fundamentally: a linear combination of known inequalities;
4α+ 6β ≥ 3B is such a linear combination;
But the LP solver must have already found this combination.

Solution: solve the LP dual problem.
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The Proof Table

Coefficients Inequalities
7 I(Si,j ; Wk) ≥ 0
3 I(Sk,j ; St,j |Wi) ≥ 0
1 I(Wi ; Wj |Si,j) ≥ 0
1 I(Wi ; St,k |Wj) ≥ 0
1 I(Wi ; WjSk,t |Si,tSj,iWt) ≥ 0
1 I(Wi ; Sk,t |Sk,jSt,jWj) ≥ 0
1 I(Sk,i ; Sk,j |Sj,iWi) ≥ 0
1 H(St,i |Sk,iWiWj) ≥ 0

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.15

0.2

0.25

0.3

0.35

0.4

0.45

(1/3, 1/3)

(2/5, 1/5) (1/2, 1/6)

(3/8, 1/4)

ᾱ

β̄

 

 

func−repair optimal tradeoff
exact−repair optimal tradeoff

Adding them up and canceling out terms ⇒ 4α+ 6β ≥ 3B
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Generalization to Larger Instances of Regenerating Codes

0.25 0.3 0.35 0.4

0.1

0.15

0.2

0.25

0.3

(1/4 , 1/4 )

(4/15, 1/5 )

(3/10, 3/20)

(2/5 , 1/10)

(3/11, 2/11)

(2/7, 1/7 )

(1/3, 1/9 )

ᾱ

β̄

 

 

exact repair rate region

best known outer bound [7]

functional repair rate region

Complete solution for the (5, 4, 4) case;
▶ 24 random variables; ∼1.16 billion constraints

before reduction.
Solution for the (6, 5, 5) setting does not match the
inner bound.
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What Else?

The general computational approach: we built a hammer
1 Symmetry and symmetry-reduced entropic LP
2 Generating human readable proofs

How to better use the hammer?
3 Reverse engineering optimal codes
4 Data-driven outer bound hypotheses
5 Computer-aided exploration

We next use the coded caching system as our running example.
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Second Setting: Coded Caching

Proposed by Maddah-Ali & Niesen (IT-14)
N files, K users, each user has a cache of size M;
Placement phase vs. delivery phase.

cached contents in 
users' memory of size     

multicasted message
in the delivery phase

central server
has N=3 files

A B C

A B B C

What is the optimal tradeoff between M and R?
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Random Variables in the Caching Problem

cached contents in 
users' memory of size     

multicasted message
in the delivery phase

central server
has N=3 files

A B C

A B B C

Random variables in the problem: n = N + K + NK

N files: W = {W1,W2, ...,WN};
Cached contents at K users: Z = {Z1,Z2, ...,ZK };
Transmission for demands (d1, d2, . . . , dK ): X = {Xd1,d2,...,dK }.
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A Linear Program (Before Reduction)
Objective function:

minimize: M

Problem specific constraints:

H(Zk |W1,W2, . . . ,WN) = 0, k = 1, 2, . . . ,K ;
H(Xd1,d2,...,dK |W1,W2, . . . ,WN) = 0, dk ∈ {1, 2, . . . ,N};

H(Wdk |Zk ,Xd1,d2,...,dK ) = 0, dk ∈ {1, 2, . . . ,N}, k = 1, . . . , k;
H(Zk) ≤ M, k = 1, 2, . . . ,K ;

H(Xd1,d2,...,dK ) ≤ R, dk ∈ {1, 2, . . . ,N}.

Generic constraints: elemental entropic inequalities for a set of R.V.s Ω

H(A|Ω \ {A}) ≥ 0, A ∈ Ω;
I(A; B|T ) ≥ 0, where T ⊆ Ω \ {A,B}, A,B ∈ Ω
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Symmetry in the Caching Problem

cached contents in 
users' memory of size     

multicasted message
in the delivery phase

central server
has N=3 files

A B C

A B B C

User index symmetry π̄: permute the cached contents Zi at users
File index symmetry π̂: permute the files before encoding
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The Existence of Optimal Symmetric Codes

Proposition
For any caching code, there is a code with the same or smaller caching memory and
transmission rate, which is both user-index-symmetric and file-index-symmetric.

⇒ Without loss of optimality, can consider only symmetric codes.

Example: (N,K ) = (3, 4)

User-index: π̄ =
(

1234
2314

)
, H(W2,Z2,X1,2,3,2) = H(W2,Z3,X3,1,2,2)

File-index: π̂ =
(

123
231

)
, H(W3,Z3,X1,2,3,2) = H(W1,Z3,X2,3,1,3)

⇒ LP significantly reduced (e.g. 108 to 104).
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Outline

1 Fundamental Limits of Information Systems

2 Symmetry-Reduced Entropy LP

3 Beyond Bounds and Proofs
Reverse engineering optimal codes
Data-driven outer bound hypotheses
Computer-aided exploration

4 A New Software Toolbox (CAI)

5 Two New Directions
Utilizing non-Shannon-type inequalities
A new decomposition approach

6 Summary
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Reverse-Engineering Codes for (N , K ) = (2, 4)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(2/3, 2/3)

(1/4 , 3/2  )

(6/13, 16/13)

(2/3 , 1    )

(1   , 2/3  )

(3/2 , 1/4  )

M

R

Simple bounds already tight for
M ∈ [0, 1/4] ∪ [1, 2];
Investigate the bounds, identify a corner
point not achieved yet;
ASSUME it achievable: attempt to design
codes.
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Extracting Joint Entropies & Reverse Engineering
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(1/4 , 3/2  )

(6/13, 16/13)

(2/3 , 1    )

(1   , 2/3  )

(3/2 , 1/4  )

M

R

(M,R) = (2/3, 1): file A,B each has 6 symbols in a
finite field;

▶ A = {A1,A2, ...,A6} and B = {B1,B2, ...,B6};
▶ Target: a linear code that caches 4 symbols, and delivers

6 symbols?
▶ Still hard to design directly.

New idea: the LP also finds the joint entropy vector in
the optimal solution

▶ ⇒ New target: find a linear code with this particular
entropy structure.
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Extracting Joint Entropies & Reverse Engineering

For the delivery part:

Joint entropy value
H(X1,1,1,2) 6
H(X1,1,2,2) 6

H(X1,1,1,2|A) 3
H(X1,1,1,2|B) 3
H(X1,1,2,2|A) 3

X1,1,1,2 =
∗ ∗ ∗ ... ∗ # # ... #
∗ ∗ ∗ ... ∗ # # ... #
∗ ∗ ∗ ... ∗ # # ... #
∗ ∗ ∗ ... ∗ # # ... #
∗ ∗ ∗ ... ∗ # # ... #
∗ ∗ ∗ ... ∗ # # ... #

 ·


A1
...

A6
−
B1
...

B6



H(X1,1,1,2|A) = H(X1,1,1,2|B) = 3
⇒ The linear combinations of B’s span dimension 3
⇒ The linear combinations of A’s span dimension 3
⇒ Recall X1,1,1,2’s has dimension 6

⇒ No need to mix A and B in the delivery X1,1,1,2!
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Extracting Joint Entropies & Reverse Engineering

For the placement part:

Joint entropy value
H(Z1|A) 3

H(Z1,Z2|A) 5
H(Z1,Z2,Z3|A) 6

H(Z1,Z2,Z3,Z4|A) 6

Any one user cache → 3 pieces of Bi ’s, any two-user caches → 5, any three-user caches → 6
⇒ Each symbol placed at 2 users’s cache, as a component of linear combinations.
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Joint entropy value
H(Z1|A) 3
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H(Z1,Z2,Z3,Z4|A) 6

Any one user cache → 3 pieces of Bi ’s, any two-user caches → 5, any three-user caches → 6
⇒ Each symbol placed at 2 users’s cache, as a component of linear combinations.

User 1 B1 B2 B3
User 2 B1 B4 B5
User 3 B2 B4 B6
User 4 B3 B5 B6
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A New Code for (N , K ) = (2, 4)

Much easier to construct the code with those clues.

Z1 A1 + B1 A2 + B2 A3 + B3 A1 + A2 + A3 + 2(B1 + B2 + B3)
Z2 A1 + B1 A4 + B4 A5 + B5 A1 + A4 + A5 + 2(B1 + B4 + B5)
Z3 A2 + B2 A4 + B4 A6 + B6 A2 + A4 + A6 + 2(B2 + B4 + B6)
Z4 A3 + B3 A5 + B5 A6 + B6 A3 + A5 + A6 + 2(B3 + B5 + B6)

Requests are (A,A,A,B), send X1,1,1,2

B1,B2,B4; A3 + 2A5 + 3A6,A3 + 3A5 + 4A6; A1 + A2 + A4.

Requests are (A,A,B,B), send X1,1,2,2

B1,A6; A2 + 2A4,A3 + 2A5,B2 + 2B3,B4 + 2B5
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Generalization to Other (N , K )

Code can be generalized (T. & Chen TIT-2018):
Choose the numbers of combinations to cache and transmit;
Choose the coefficients nicely: full rank conditions.

Theorem
For N ∈ N files and K ∈ N users each with a cache of size M, and N ≤ K, the following
(M,R) pairs are achievable( t[(N − 1)t + K − N]

K (K − 1) ,
N(K − t)

K

)
, t = 0, 1, . . . ,K .
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Outline

1 Fundamental Limits of Information Systems

2 Symmetry-Reduced Entropy LP

3 Beyond Bounds and Proofs
Reverse engineering optimal codes
Data-driven outer bound hypotheses
Computer-aided exploration

4 A New Software Toolbox (CAI)

5 Two New Directions
Utilizing non-Shannon-type inequalities
A new decomposition approach

6 Summary
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A Data Driven Hypothesis: Connection Cross Instances
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Case (N,K)=(4,2)

(4/3, 2/3) (2, 1/2)

Red line: optimal tradeoff; Blue dash-dot: cutset outer bound

Use the computational approach to first find solutions for N = 3, 4;
For N = 3, 4, the upper corner point disappears (surprise!);
Hypothesis: one corner point (M,R) = (N/2, 1/2) if (N ≥ 3,K = 2).
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A Complete Characterization for K = 2

Theorem
Converse: for (N,K ) = (N, 2) and N ≥ 3, the (M,R) pair must satisfy

3M + NR ≥ 2N, M + NR ≥ N. (1)

Forward: any nonnegative (M,R) pair satisfying (1) is achievable.

The first collection of cases to have a complete solution;
Generate explicit proofs using LP-dual, and find a general pattern;
This generalization is not computer-produced /, but inspired by it.
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Difficulty for Larger Cases

Complexity increases quickly with problem parameters:
Number of R.V.s in caching: N + K + NK ;
Number of LP constraints after symmetry-reduction:

≈
(N+K+NK

2
)
2N+K+NK −2

N!K !

(N,K ) = (6, 3), 225 R.V.s, ≈ 7.8 × 1067 LP constraints after symmetry reduction (there
are ≈ 1.33 × 1050 atoms on earth /).

Run out of memory ⇒ Idea: Relax the problem strategically
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Equivalent Bounds Using Few Demands
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Outer bound: Demand type (3,1)

Outer bound: Demand type (2,2)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(2/3, 2/3)

(1/4 , 3/2  )

(6/13, 16/13)

(2/3 , 1    )

(1   , 2/3  )

(3/2 , 1/4  )

M

R

Finding: Equivalent bounds can be obtained with only some demands.
(N,K ) = (2, 4), only W ∪ Z ∪ {X1,1,1,2,X1,1,2,2}: 22 ⇒ 8 R.V.s;
(N,K ) = (3, 3), only W ∪ Z ∪ {X2,1,1,X3,1,1,X3,2,1}: 30 ⇒ 9 R.V.s .
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Exploration and More Bounds
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Case (N,K)=(4,3)
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Case (N,K)=(6,3)

Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;
thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

Many new observations and hypotheses;
Recall (6, 3), we had 1067 LP constraints: Happen to solve this case completely!
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Exploration and More Bounds
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Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;
thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

Significant improved outer bounds, and some further generalized by Yu et al. TIT-18;
More details: T. Entropy MDPI-18.
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Outline

1 Fundamental Limits of Information Systems

2 Symmetry-Reduced Entropy LP

3 Beyond Bounds and Proofs
Reverse engineering optimal codes
Data-driven outer bound hypotheses
Computer-aided exploration

4 A New Software Toolbox (CAI)

5 Two New Directions
Utilizing non-Shannon-type inequalities
A new decomposition approach

6 Summary
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The Computer-Aided Investigation (CAI) Toolbox

We open-sourced a package to streamline many of the functionalities (C/C++/Python):
Formatted problem description file: specify the coding problem;
Use symmetry to perform reduction;
Compute bounds, generate proofs, trace out convex hull, readout joint entropy values,
sensitivity analysis, etc.

One caveat:
Requires a local LP solver backend: Cplex or Gurobi
Cplex or Gurobi are commercial solvers but free for academic users;
Known to be significantly faster than open-source solvers and have various additional
functionalities;
General academic license not set up for online computing access.

https://github.com/ct2641/CAI
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An Example: (4, 3, 3) Regenerating Code
//PDRG4x3x3.txt: problem description file for the (4,3,3) regenerating code problem.

Random variables:
W1,W2,W3,W4,S12,S13,S14,S21,S23,S24,S31,S32,S34,S41,S42,S43

Additional LP variables:
A,B

Objective:
A+B

Dependency:
S12,S13,S14:W1
S21,S23,S24:W2
S31,S32,S34:W3
S41,S42,S43:W4
W1:S21,S31,S41
W2:S12,S32,S42
W3:S13,S23,S43
W4:S14,S24,S34

Constant bounds:
H(W1)-A<=0
H(S12)-B<=0
H(W1,W2,W3,W4)>=1

Symmetry:
W1,W2,W3,W4,S12,S13,S14,S21,S23,S24,S31,S32,S34,S41,S42,S43
W1,W2,W4,W3,S12,S14,S13,S21,S24,S23,S41,S42,S43,S31,S32,S34
W1,W3,W2,W4,S13,S12,S14,S31,S32,S34,S21,S23,S24,S41,S43,S42
W1,W4,W3,W2,S14,S13,S12,S41,S43,S42,S31,S34,S32,S21,S24,S23
W1,W3,W4,W2,S13,S14,S12,S31,S34,S32,S41,S43,S42,S21,S23,S24
W1,W4,W2,W3,S14,S12,S13,S41,S42,S43,S21,S24,S23,S31,S34,S32
W2,W1,W3,W4,S21,S23,S24,S12,S13,S14,S32,S31,S34,S42,S41,S43
W2,W4,W3,W1,S24,S23,S21,S42,S43,S41,S32,S34,S31,S12,S14,S13
W2,W1,W4,W3,S21,S24,S23,S12,S14,S13,S42,S41,S43,S32,S31,S34
W2,W4,W1,W3,S24,S21,S23,S42,S41,S43,S12,S14,S13,S32,S34,S31
W2,W3,W1,W4,S23,S21,S24,S32,S31,S34,S12,S13,S14,S42,S43,S41
W2,W3,W4,W1,S23,S24,S21,S32,S34,S31,S42,S43,S41,S12,S13,S14
W3,W2,W1,W4,S32,S31,S34,S23,S21,S24,S13,S12,S14,S43,S42,S41
W3,W2,W4,W1,S32,S34,S31,S23,S24,S21,S43,S42,S41,S13,S12,S14
W3,W1,W2,W4,S31,S32,S34,S13,S12,S14,S23,S21,S24,S43,S41,S42
W3,W1,W4,W2,S31,S34,S32,S13,S14,S12,S43,S41,S42,S23,S21,S24
W3,W4,W1,W2,S34,S31,S32,S43,S41,S42,S13,S14,S12,S23,S24,S21
W3,W4,W2,W1,S34,S32,S31,S43,S42,S41,S23,S24,S21,S13,S14,S12
W4,W2,W3,W1,S42,S43,S41,S24,S23,S21,S34,S32,S31,S14,S12,S13
W4,W2,W1,W3,S42,S41,S43,S24,S21,S23,S14,S12,S13,S34,S32,S31
W4,W1,W3,W2,S41,S43,S42,S14,S13,S12,S34,S31,S32,S24,S21,S23
W4,W1,W2,W3,S41,S42,S43,S14,S12,S13,S24,S21,S23,S34,S31,S32
W4,W3,W1,W2,S43,S41,S42,S34,S31,S32,S14,S13,S12,S24,S23,S21
W4,W3,W2,W1,S43,S42,S41,S34,S32,S31,S24,S23,S21,S14,S13,S12

Bounds to prove:
8A+12B>=6

end
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An Example: (4, 3, 3) Regenerating Code – Continued

...
W3,W2,W1,W4,S32,S31,S34,S23,S21,S24,S13,S12,S14,S43,S42,S41
W3,W2,W4,W1,S32,S34,S31,S23,S24,S21,S43,S42,S41,S13,S12,S14
W3,W1,W2,W4,S31,S32,S34,S13,S12,S14,S23,S21,S24,S43,S41,S42
W3,W1,W4,W2,S31,S34,S32,S13,S14,S12,S43,S41,S42,S23,S21,S24
W3,W4,W1,W2,S34,S31,S32,S43,S41,S42,S13,S14,S12,S23,S24,S21
W3,W4,W2,W1,S34,S32,S31,S43,S42,S41,S23,S24,S21,S13,S14,S12
W4,W2,W3,W1,S42,S43,S41,S24,S23,S21,S34,S32,S31,S14,S12,S13
W4,W2,W1,W3,S42,S41,S43,S24,S21,S23,S14,S12,S13,S34,S32,S31
W4,W1,W3,W2,S41,S43,S42,S14,S13,S12,S34,S31,S32,S24,S21,S23
W4,W1,W2,W3,S41,S42,S43,S14,S12,S13,S24,S21,S23,S34,S31,S32
W4,W3,W1,W2,S43,S41,S42,S34,S31,S32,S14,S13,S12,S24,S23,S21
W4,W3,W2,W1,S43,S42,S41,S34,S32,S31,S24,S23,S21,S14,S13,S12

Bounds to prove:
8A+12B>=6

end
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An Example: (4, 3, 3) Regenerating Code Result
Simple lower bound computation:
******************************************************************
-The following 16 random variables were found:
W1 W2 W3 W4 S12 S13 S14 S21 S23 S24 S31 S32 S34 S41 S42 S43
---The problem has 2 additional LP variables.
---The objective function has 2 non-zero terms.
---The problem has 8 dependency relations.
---The problem has 3 constant value bounds.
---Permutations in the symmetry relation = 24.
---Number of bounds to prove = 1.
******************************************************************
Total number of elements to reduce: 65536
CPXPARAM_Read_DataCheck 1
Tried aggregator 1 time.
DUAL formed by presolve
LP Presolve eliminated 38643 rows and 3 columns.
Reduced LP has 177 rows, 5084 columns, and 17831 nonzeros.
Presolve time = 0.05 sec. (24.27 ticks)
Parallel mode: using up to 20 threads for barrier.
Number of nonzeros in lower triangle of A*A’ = 5960
Using Approximate Minimum Degree ordering
Total time for automatic ordering = 0.00 sec. (0.44 ticks)
Summary statistics for Cholesky factor:

Threads = 20
Rows in Factor = 177
Integer space required = 923
Total non-zeros in factor = 12808
Total FP ops to factor = 1232248

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf Inf Ratio
0 1.0000000e+01 0.0000000e+00 3.77e+04 0.00e+00 5.26e+03 1.00e+00
1 6.1373374e+00 1.5078468e+00 2.60e+04 0.00e+00 3.34e+03 2.44e+00
2 2.2445860e+00 1.4338756e+00 1.07e+04 0.00e+00 1.06e+03 8.08e+04
3 1.5228039e+00 9.6993458e-01 4.73e+03 0.00e+00 1.81e+02 9.34e+01
4 1.0830951e+00 9.9552024e-01 7.79e+02 0.00e+00 1.94e+01 1.01e+03
5 1.0262480e+00 9.8688399e-01 3.25e+02 0.00e+00 2.65e+00 7.06e+03
6 1.0237260e+00 9.7472519e-01 3.14e+02 0.00e+00 1.78e+00 6.55e+03
7 9.5978567e-01 9.5337070e-01 4.00e+01 0.00e+00 2.14e-01 5.25e+04
8 9.0444925e-01 8.9317974e-01 2.54e+01 0.00e+00 1.26e-01 6.17e+04
9 8.0010814e-01 8.3512233e-01 7.88e+00 0.00e+00 7.35e-02 8.41e+04

10 7.6631321e-01 7.7048934e-01 5.74e+00 0.00e+00 4.38e-02 1.33e+05
11 7.0912848e-01 7.0989975e-01 2.21e+00 0.00e+00 1.64e-02 3.38e+05
12 6.5432023e-01 6.5701740e-01 6.27e-01 0.00e+00 5.20e-03 9.72e+05
13 6.2554618e-01 6.2728184e-01 1.45e-02 0.00e+00 3.91e-04 1.33e+07
14 6.2499995e-01 6.2500055e-01 1.44e-06 0.00e+00 1.13e-07 5.06e+10
15 6.2500000e-01 6.2500000e-01 2.11e-10 0.00e+00 1.58e-11 4.65e+14

Barrier time = 0.11 sec. (33.54 ticks)

Total time on 20 threads = 0.11 sec. (33.54 ticks)

******************************************************************
Optimal value is 0.625000.
Values achieving the optimal solution:
0.375000 0.250000

******************************************************************
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An Example: (4, 3, 3) Regenerating Code Result – Continued
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12 6.5432023e-01 6.5701740e-01 6.27e-01 0.00e+00 5.20e-03 9.72e+05
13 6.2554618e-01 6.2728184e-01 1.45e-02 0.00e+00 3.91e-04 1.33e+07
14 6.2499995e-01 6.2500055e-01 1.44e-06 0.00e+00 1.13e-07 5.06e+10
15 6.2500000e-01 6.2500000e-01 2.11e-10 0.00e+00 1.58e-11 4.65e+14

Barrier time = 0.11 sec. (33.54 ticks)

Total time on 20 threads = 0.11 sec. (33.54 ticks)

******************************************************************
Optimal value is 0.625000.
Values achieving the optimal solution:
0.375000 0.250000

******************************************************************
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An Example: (4, 3, 3) Regenerating Code Result – Continued

Trace out the convex hull:
******************************************************************
-The following 16 random variables were found:
W1 W2 W3 W4 S12 S13 S14 S21 S23 S24 S31 S32 S34 S41 S42 S43
---The problem has 2 additional LP variables.
---The objective function has 2 non-zero terms.
---The problem has 8 dependency relations.
---The problem has 3 constant value bounds.
---Permutations in the symmetry relation = 24.
---Number of bounds to prove = 1.
******************************************************************
Total number of elements to reduce: 65536
New point (0.333333, 0.333333).
New point (0.500000, 0.166667).
New point (0.375000, 0.250000).

List of found points on the hull:
(0.333333, 0.333333).
(0.375000, 0.250000).
(0.500000, 0.166667).
End of list of found points.
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Data-driven outer bound hypotheses
Computer-aided exploration

4 A New Software Toolbox (CAI)

5 Two New Directions
Utilizing non-Shannon-type inequalities
A new decomposition approach

6 Summary
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Third Setting: Private Information Retrieval

......

server 1 server 2 server 3 server N

Retrieval protocols: K messages (of unit rate each) & N servers
To request Wk : with a random key F, user generates queries Q[k]

1 , . . . ,Q[k]
N ;

Servers: return answers A[k]
1 , . . . ,A[k]

N after receiving the queries;
User recovers Ŵk = ψ(A[k]

1:N , k,F).

Requirements: retrieve correctly, but keep the identity of the message private
Correctness: Wk = Ŵk ;
Privacy: the query distribution Pr(Q[k]

n = q) = Pr(Q[k′]
n = q).
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Two Bounds Obtained Through Computer-Aided Exploration
Problem setup: 2NK + K + 1 random variables.

Identical distribution for retrieving different message ⇒ Constraints on entropy as equality.

i.e., (A[k]
n ,Q[k]

n ,W1:K , S1:N) ∼ (A[k′]
n ,Q[k′]

n ,W1:K ,S1:N) ⇒
H(Q[k]

n ,W1,W2) = H(Q[k′]
n ,W1,W2), H(A[k]

n ,W1) = H(A[k′]
n ,W1), ...

2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
MDS-coded PIR

uncoded storage PIR

outer bound in Theorem 1

outer bound in Theorem 2

0.199999996692366

Two tradeoff bounds between storage α and download β:

Almost vertical bound:
β + (N − 1)α ≥ K .

Almost horizontal bound:
α+(N−1)β

N−2 + NK−1β ≥ K
N−2 + NK −1

N(N−1) .

More details: T. TIT-20; Guo et al., JSAIT-21.
June 2024 54 / 72



Two Bounds Obtained Through Computer-Aided Exploration
Problem setup: 2NK + K + 1 random variables.

Identical distribution for retrieving different message ⇒ Constraints on entropy as equality.

i.e., (A[k]
n ,Q[k]

n ,W1:K , S1:N) ∼ (A[k′]
n ,Q[k′]

n ,W1:K ,S1:N) ⇒
H(Q[k]

n ,W1,W2) = H(Q[k′]
n ,W1,W2), H(A[k]

n ,W1) = H(A[k′]
n ,W1), ...

2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
MDS-coded PIR

uncoded storage PIR

outer bound in Theorem 1

outer bound in Theorem 2

0.199999996692366

Two tradeoff bounds between storage α and download β:

Almost vertical bound:
β + (N − 1)α ≥ K .

Almost horizontal bound:
α+(N−1)β

N−2 + NK−1β ≥ K
N−2 + NK −1

N(N−1) .

More details: T. TIT-20; Guo et al., JSAIT-21.
June 2024 54 / 72



Outline
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Utilizing Non-Shannon-Type Inequalities
For the PIR problem with storage constraint:

Bound 3:
When N = K = 2, 3α+ 8β ≥ 10.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
0.75

0.8

0.85

0.9

0.95

1

best known inner bound

proposed outer bound

Relies on a novel pseudo-message technique:
non-Shannon-type inequality (T. TIT-20).
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Some Details

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
0.75

0.8

0.85

0.9

0.95

1

best known inner bound

proposed outer bound

Three steps to derive this new bound:
1 Symmetry reduction: w.l.o.o., assume equal rate for all answers, so are storage contents;
2 Consider a subtle dependence structure among answers;
3 Introducing pseudo-messages: extended probability space to derive the bound.

Note: a different problem representation from that to derive the generic bounds just now.
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Proof of Bound 3: Step 1

In a general PIR storage code:
Storage contents may have different rates at different servers;
Different answers may have different rates.

Symmetrize the code: through server-symmetry and variety-symmetry (Tian et al. IT-19)
Storage rate: H(Sn) = H(Sn′) for any two servers n, n′ ∈ {1, 2, . . . ,N} ⇒ H(Sn) ≤ α;
Answer rate: H(A(q)

n ) = H(A(q′)
n′ ), q, q′ are the query indices ⇒ H(A(q)

n ) ≤ β;

Joint entropy rate: H(Aq
n,Wk) = H(A(q′)

n′ ,Wk′), n, n′ ∈ {1, 2, . . . ,N}, q, q′ are query
indices, k, k ′ ∈ {1, 2, . . . ,K}.

June 2024 58 / 72



Proof of Bound 3: Step 1

In a general PIR storage code:
Storage contents may have different rates at different servers;
Different answers may have different rates.

Symmetrize the code: through server-symmetry and variety-symmetry (Tian et al. IT-19)
Storage rate: H(Sn) = H(Sn′) for any two servers n, n′ ∈ {1, 2, . . . ,N} ⇒ H(Sn) ≤ α;
Answer rate: H(A(q)

n ) = H(A(q′)
n′ ), q, q′ are the query indices ⇒ H(A(q)

n ) ≤ β;

Joint entropy rate: H(Aq
n,Wk) = H(A(q′)

n′ ,Wk′), n, n′ ∈ {1, 2, . . . ,N}, q, q′ are query
indices, k, k ′ ∈ {1, 2, . . . ,K}.

June 2024 58 / 72



Proof of Bound 3: Step 1

In a general PIR storage code:
Storage contents may have different rates at different servers;
Different answers may have different rates.

Symmetrize the code: through server-symmetry and variety-symmetry (Tian et al. IT-19)
Storage rate: H(Sn) = H(Sn′) for any two servers n, n′ ∈ {1, 2, . . . ,N} ⇒ H(Sn) ≤ α;
Answer rate: H(A(q)

n ) = H(A(q′)
n′ ), q, q′ are the query indices ⇒ H(A(q)

n ) ≤ β;

Joint entropy rate: H(Aq
n,Wk) = H(A(q′)

n′ ,Wk′), n, n′ ∈ {1, 2, . . . ,N}, q, q′ are query
indices, k, k ′ ∈ {1, 2, . . . ,K}.

June 2024 58 / 72



Proof of Bound 3: Step 1

In a general PIR storage code:
Storage contents may have different rates at different servers;
Different answers may have different rates.

Symmetrize the code: through server-symmetry and variety-symmetry (Tian et al. IT-19)
Storage rate: H(Sn) = H(Sn′) for any two servers n, n′ ∈ {1, 2, . . . ,N} ⇒ H(Sn) ≤ α;
Answer rate: H(A(q)

n ) = H(A(q′)
n′ ), q, q′ are the query indices ⇒ H(A(q)

n ) ≤ β;

Joint entropy rate: H(Aq
n,Wk) = H(A(q′)

n′ ,Wk′), n, n′ ∈ {1, 2, . . . ,N}, q, q′ are query
indices, k, k ′ ∈ {1, 2, . . . ,K}.

June 2024 58 / 72



Proof of Bound 3: Step 2

Server 1 Server 2

A subtle dependence structure:
1 To retrieve W1: server-1 answer X1 = A(q1)

1 & server-2
answer Y1 = A(q2)

2 ;
2 X1 can also retrieve W2 (due to privacy): together with

Y2 = A(q′
2)

2 ;
3 Y1 can also retrieve W2: together with X2 = A(q′

1)
1 ;

4 Y2 can also retrieve W1: together with X3 = A(q′′
1 )

1 .

H(W1|X1,Y1) = 0, H(W2|X1,Y2) = 0, H(W2|X2,Y1) = 0, H(W1|X3,Y2) = 0.
Additional dependence:

(X1,X2,X3,Y1,Y2) are deterministic functions of W1,W2;
Answer encoding function: H(X1,X2,X3|S1) = 0 and H(Y1,Y2|S2) = 0, implying

α ≥ H(S1) ≥ H(X1,X2,X3), α ≥ H(S2) ≥ H(Y1,Y2).
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Proof of Bound 3: Step 3

Extend the probability space: the copy lemma technique
Pseudo messages V1,V2: (V1,V2) ↔ (Y1,Y2) ↔ (W1,W2,X1,X2,X3)

Identical distribution: (Y1,Y2,V1,V2) ∼ (Y1,Y2,W1,W2).

Pseudo messages (U1,U2): (U1,U2) ↔ (X1,X2,X3) ↔ (W1,W2,Y1,Y2,V1,V2)

Identical distribution: (X1,X2,X3,U1,U2) ∼ (X1,X2,X3,W1,W2).

In this extended probability space, terms can be canceled via the above distribution relation.
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Hardness of Automatic Incorporating Non-Shannon

We are expanding but not reducing the probability space.
How do we know what to expand? Infinite many choices.
The expansion given above for the PIR problem leads to slightly better bounds.
Requires (automatic) exploration and machine learning of patterns.
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Outline

1 Fundamental Limits of Information Systems

2 Symmetry-Reduced Entropy LP

3 Beyond Bounds and Proofs
Reverse engineering optimal codes
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The Reformulated Optimization Problem

The original optimization problem is

min
I&II

f0

where type-I constraints are elemental inequalities, and type-II are problem specific ones.

Assuming the number of effective type-I inequalities is very small ≤ κ, then

min
I&II

f0 = max
Ip⊆I:|Ip |=κ

min
Ip&II

f0.

We do have some empirical evidence: all the results given previously only required a small
number of inequalities (e.g., 8 inequalities for the (4,3,3) code)
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The New Approach

Idea: “Guess” on the effective inequalities
With this conjectured set of effective inequalities,
compute a bound;
Many attempts can be made to find the best bound;
The effective inequalities are likely important
constraints: reuse them in future episodes.

Similar to how a human does it:
Try to understand the problem and find the most
constraining parts;
Attempt to construct outer bounds and improve on
it through some trial-and-error.

episode
initialization

start

generating 
set     

solve LP for

solve dual LP 
effective 

inequalities
finish?

yes

no

end
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The effective inequalities are likely important
constraints: reuse them in future episodes.

Similar to how a human does it:
Try to understand the problem and find the most
constraining parts;
Attempt to construct outer bounds and improve on
it through some trial-and-error.
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Incorporating Side Information

There are many “intuitions” that human researchers rely on
Start from smaller instances and extend it to large instances;
Use genie-aided arguments;
Relaxed the problem constraints;
Utilize potentially optimal codes.
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How to Utilize Potentially Optimal Codes

Recall our example where min(3a + c) = 8:

a +b ≥1
−4b −c ≥2
+b +2c ≥3

a +4c ≥0
Suppose the physical meaning of the system leads us to an assignment
(a, b, c) = (2,−1, 2), which we suspect is optimal;
min(3a + c) = 8 would imply that the first 3 inequalities are effective, and the last not;
Indeed, the last inequality with (a, b, c) = (2,−1, 2) here will hold with strict inequality,
while the first three with equality.

⇒Exclude inequalities not equal to zero with the suspected optimal solution; more generally,
select those with a mismatch gap less than a threshold for a given assignment.
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Applying on the Regenerating Code Problem (6, 5, 5)

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
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0.2

inner bound

cutset-bound

best existing outer bound

new computed bound with SI

The inner bound is due to the layered coding scheme in TIT-15: optimal for linear codes;
The best outer bound was due to Mohajer and Tandon ISIT-15;
Details in Chen & T. ISIT-22.
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Pros and Cons

Pros:
Each LP solves a small problem: both the number of
variables and the number of constraints;
Reduction-based approach: when the problem is large, no
good way to even enumerate and start the reduction;
Various intuition/side-information can be incorporated;
Mimic human behaviors, potentially more efficient.

Cons:
Only works when a small set of inequalities are effective;
Hard to identify good combination of entropy terms and
inequalities, especially at the beginning;
Worse case complexity may even be worse than directly
solving the entropy LP.
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solve LP for

solve dual LP 
effective 

inequalities
finish?

yes
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end
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Prediction vs Generation

We want to “predict/find” the best extended probability
space or inequality combinations;
Actually, perhaps not the right way to look at it: we only
need to generate such patterns efficiently and improve the
accuracy online.
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Outline

1 Fundamental Limits of Information Systems

2 Symmetry-Reduced Entropy LP
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Summary

The conventional approach relies too much on human efforts
Relieve us of tedious work by introducing more machine intelligence;
A computational and data-driven approach;
Application on real research problems proves its effectiveness.

The two new directions both point to machine learning:
▶ How to effectively and automatically select the probability space to extend?
▶ How to intelligently select subsets of inequalities in the loop?

Possible answer: reinforcement learning and generative models?

Disclaimer: It is an incomplete overview, as several related and recent efforts were not included.
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Le Fin

Questions, please!
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