Information Theoretic Constraints Breed New Combinatorial Structures: Entropy Functions on Two-Dimensional Faces of Polymatroidal Region of Degree Four

Qi Chen 1

Joint work with Shaocheng Liu ¹ and Minquan Cheng ²

1. School of Telecommunication Engineering, Xidian University 2. Guangxi Normal University

> The Chinese University of Hong Kong September 2nd, 2024

Entropy functions

Entropy function

Let $N_n = \{1, 2, ..., n\}$. For a discrete random vector $\mathbf{X} = (X_i, i \in N_n)$, the entropy function of \mathbf{X} is a set function $\mathbf{h} : 2^{N_n} \to \mathbb{R}$ defined by

$$\mathbf{h}(A)=H(X_A),$$

for any $A \subseteq N_n$.

Entropy functions

Entropy function

Let $N_n = \{1, 2, ..., n\}$. For a discrete random vector $\mathbf{X} = (X_i, i \in N_n)$, the entropy function of \mathbf{X} is a set function $\mathbf{h} : 2^{N_n} \to \mathbb{R}$ defined by

 $\mathbf{h}(A)=H(X_A),$

for any $A \subseteq N_n$.

Entropy space

$$\mathcal{H}_n \triangleq \mathbb{R}^{2^{N_n}}$$

Entropy functions

Entropy function

Let $N_n = \{1, 2, ..., n\}$. For a discrete random vector $\mathbf{X} = (X_i, i \in N_n)$, the entropy function of \mathbf{X} is a set function $\mathbf{h} : 2^{N_n} \to \mathbb{R}$ defined by

 $\mathbf{h}(A)=H(X_A),$

for any $A \subseteq N_n$.

Entropy space

$$\mathcal{H}_n \triangleq \mathbb{R}^{2^{N_n}}$$

Entropy region Γ_n^*

 $\Gamma_n^* \triangleq \{\mathbf{h} \in \mathcal{H}_n : \exists \mathbf{X}, \mathbf{h} \text{ is the entropy function of } \mathbf{X}\}\$

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4

Shannon outer bound Γ_n^*

Shannon-type inequalities

For any $A, B \subseteq N_n$,

$$egin{aligned} & H(X_A) \geq 0, \ & H(X_A) \leq H(X_B) & ext{if } A \subseteq B, \ & H(X_A) + H(X_B) \geq H(X_{A \cap B}) + H(X_{A \cup B}). \end{aligned}$$

Shannon outer bound Γ_n^*

Shannon-type inequalities

For any $A, B \subseteq N_n$,

$$egin{aligned} & H(X_A) \geq 0, \ & H(X_A) \leq H(X_B) & ext{if } A \subseteq B, \ & H(X_A) + H(X_B) \geq H(X_{A \cap B}) + H(X_{A \cup B}). \end{aligned}$$

Polymatroidal region Γ_n

$$\begin{split} \Gamma_n &\triangleq \{\mathbf{h} \in \mathcal{H}_n : \mathbf{h}(A) \geq 0, \\ \mathbf{h}(A) \leq \mathbf{h}(B), & \text{if } A \subseteq B, \\ \mathbf{h}(A) + \mathbf{h}(B) \geq \mathbf{h}(A \cap B) + \mathbf{h}(A \cup B). \} \end{split}$$

Relations between Γ_n^* and Γ_n

• $\Gamma_n^* \subseteq \Gamma_n$

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4

- $\Gamma_n^* \subseteq \Gamma_n$
- $\Gamma_1^* = \Gamma_1$, $\Gamma_2^* = \Gamma_2$

- $\Gamma_n^* \subseteq \Gamma_n$
- $\bullet \ \Gamma_1^* = \Gamma_1, \ \Gamma_2^* = \Gamma_2$
- $\Gamma_3^* \subsetneq \Gamma_3$, but $\overline{\Gamma_3^*} = \Gamma_3$

- $\Gamma_n^* \subseteq \Gamma_n$
- $\Gamma_1^* = \Gamma_1$, $\Gamma_2^* = \Gamma_2$
- $\Gamma_3^* \subsetneq \Gamma_3$, but $\overline{\Gamma_3^*} = \Gamma_3$
- $\overline{\Gamma_n^*} = \Gamma_n, n \leq 3,$

- $\Gamma_n^* \subseteq \Gamma_n$
- $\bullet \ \Gamma_1^* = \Gamma_1, \ \Gamma_2^* = \Gamma_2$
- $\Gamma_3^* \subsetneq \Gamma_3$, but $\overline{\Gamma_3^*} = \Gamma_3$
- $\overline{\Gamma_n^*} = \Gamma_n, n \leq 3,$
- $\overline{\Gamma_n^*} \subsetneq \Gamma_n$, $n \ge 4$, due to the existence of non-Shannon-type information inequalities.

Relations between Γ_n^* and Γ_n

- $\Gamma_n^* \subseteq \Gamma_n$
- $\bullet \ \Gamma_1^* = \Gamma_1, \ \Gamma_2^* = \Gamma_2$
- $\Gamma_3^* \subsetneq \Gamma_3$, but $\overline{\Gamma_3^*} = \Gamma_3$
- $\overline{\Gamma_n^*} = \Gamma_n$, $n \leq 3$,
- $\overline{\Gamma_n^*} \subsetneq \Gamma_n$, $n \ge 4$, due to the existence of non-Shannon-type information inequalities.

Non-Shannon-type Information inequalities

(Zhang-Yeung inequality, 1998) Given random variables X_1 , X_2 , X_3 and X_4 ,

 $2I(X_3; X_4) \leq I(X_1; X_2) + I(X_1; X_3, X_4) + 3I(X_3; X_4|X_1) + I(X_3; X_4|X_2).$

Faces of a polyhdral cone

Let C ⊆ ℝ^d be a full-dimensional polyhedral cone. For a hyperplane P containing O in ℝ^d, if C ⊆ P⁺, where P⁺ is one of the two halfspaces corresponding to P,

$$F \triangleq C \cap P$$

is called a (proper) face of C, while C itself is its improper face.

Let C ⊆ ℝ^d be a full-dimensional polyhedral cone. For a hyperplane P containing O in ℝ^d, if C ⊆ P⁺, where P⁺ is one of the two halfspaces corresponding to P,

$$F \triangleq C \cap P$$

is called a (proper) face of C, while C itself is its improper face.

- F is called a facet of C if dim F = d 1, and
 - F is an extreme ray of C if dim F = 1.

Let C ⊆ ℝ^d be a full-dimensional polyhedral cone. For a hyperplane P containing O in ℝ^d, if C ⊆ P⁺, where P⁺ is one of the two halfspaces corresponding to P,

$$F \triangleq C \cap P$$

is called a (proper) face of C, while C itself is its improper face.

- F is called a facet of C if dim F = d 1, and
 - F is an extreme ray of C if dim F = 1.
- H-representation: each face *F* can be written as the intersection of the facets containing *F*.
 - V-representation: each face *F* can be written as the convex combination of the extreme rays *F* contains.

Elemental inequalities

$$\begin{split} \mathbf{h}(N_n) &\geq \mathbf{h}(N_n \setminus \{i\}) \quad i \in N_n; \\ \mathbf{h}(K \cup i) + \mathbf{h}(K \cup j) &\geq \mathbf{h}(K) + \mathbf{h}(K \cup ij) \quad i < j, i, j \in N_n, K \subseteq N_n \setminus \{i, j\} \end{split}$$

Elemental inequalities

$$\begin{split} \mathbf{h}(N_n) &\geq \mathbf{h}(N_n \setminus \{i\}) \quad i \in N_n; \\ \mathbf{h}(K \cup i) + \mathbf{h}(K \cup j) &\geq \mathbf{h}(K) + \mathbf{h}(K \cup ij) \quad i < j, i, j \in N_n, K \subseteq N_n \setminus \{i, j\} \end{split}$$

- Each facet $F = \Gamma_n \cap P$ one-to-one corresponds to a unique P which is the hyperplane by setting an elemental inequality by equality
- There are totally $n + \binom{n}{2} 2^{n-2}$ elemental inequality, and so $n + \binom{n}{2} 2^{n-2}$ facets of Γ_n

Obtain extreme rays by facets

Extreme rays of Γ_n can be obtained from the facets by the software lrs for small number of n.

- for n = 2, there exist 3 extreme rays, while there are 3 facets
- for n = 3, there exist 8 extreme rays, while there are 9 facets
- for n = 4, there exist 41 extreme rays, while there are 28 facets
- for n = 5, there exist over 10^6 extreme rays, while there are 85 facets

Obtain extreme rays by facets

Extreme rays of Γ_n can be obtained from the facets by the software lrs for small number of n.

- for n = 2, there exist 3 extreme rays, while there are 3 facets
- for n = 3, there exist 8 extreme rays, while there are 9 facets
- for n = 4, there exist 41 extreme rays, while there are 28 facets
- for n = 5, there exist over 10^6 extreme rays, while there are 85 facets

Extreme ray representation

$$E = \{a\mathbf{r} : a \ge 0, \}$$

where **r** is the minimal integer polymatroid on the ray.

Constrained information inequalities

For a set C of constraints of equalities obtained by setting the Shannon-type inequalities be equalities,

- $F = \Gamma_n \cap C$ is a face of Γ_n , and
- the constrained information inequalities under C determines an outer bound of the entropy functions on F

Constrained information inequalities

For a set C of constraints of equalities obtained by setting the Shannon-type inequalities be equalities,

• $F = \Gamma_n \cap C$ is a face of Γ_n , and

• the constrained information inequalities under C determines an outer bound of the entropy functions on F

Unconstrained information inequalities

For unconstrained information inequalities, we take the improper face $F = \Gamma_n$.

Entropy functions on faces of Γ_3 : extreme rays

Extreme rays of Γ_3

8 extreme rays in 4 types are in the form

$$E_M = \{a\mathbf{r}_M : a \ge 0, \}$$

where M are

- $U_{1,1}^{i}$, $i \in N_{3}$; $U_{1,3}$;
- $U_{1,2}^{\alpha}, \alpha \subseteq N_3, |\alpha| = 2;$ $U_{2,3}$

and $U_{k,m}^{\alpha}$ is the matroid on N_3 with rank function $\mathbf{r}(A) = \min\{|A \cap \alpha|, k\}, A \subseteq N_3$, and $\alpha = N_3$ when it is omitted.

Entropy functions on faces of Γ_3 : extreme rays

Extreme rays of Γ_3

8 extreme rays in 4 types are in the form

$$E_M = \{a\mathbf{r}_M : a \ge 0, \}$$

where M are

- $U_{1,1}^i$, $i \in N_3$; • $U_{1,3}$;
- $U_{1,2}^{\alpha}, \alpha \subseteq N_3, |\alpha| = 2;$ $U_{2,3}$

and $U_{k,m}^{\alpha}$ is the matroid on N_3 with rank function $\mathbf{r}(A) = \min\{|A \cap \alpha|, k\}, A \subseteq N_3$, and $\alpha = N_3$ when it is omitted.

Entropy functions on extreme rays

• The first 7 extreme rays in 3 types are all entropic.

•
$$E^*_{U_{2,3}} = E_{U_{2,3}} \cap \Gamma^*_n = \{ar_{U_{2,3}} : a \ge 0, a = \log k \text{ for some positive } k \in \mathbb{Z}\}.^a$$

^aZhen Zhang and Raymond W Yeung. "A non-Shannon-type conditional inequality of information quantities". In: *IEEE Transactions on Information Theory* 43.6 (1997), pp. 1982–1986.

Shaocheng Liu, Qi Chen, and Minquan Cheng

Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4

. . .

Entropy functions on faces of Γ_3 : 2-dim faces

•
$$F = (E_1, E_2) = \{a\mathbf{r}_1 + b\mathbf{r}_2 : a, b \ge 0\}.$$

• Only two types of faces containing $U_{2,3}$ need to be further characterized: $(U_{2,3}, U_{1,2}^{12})$ and $(U_{2,3}, U_{1,1}^{1})$, which has been done by Matúš¹, and Chen and Yeung², respectively.

¹František Matúš. "Piecewise linear conditional information inequality". In: *IEEE Transactions on Information Theory* 52.1 (2005), pp. 236–238. ²Qi Chen and Raymond W. Yeung. "Characterizing the entropy function region via extreme rays". In: *IEEE Information Theory Workshop*. Lausanne, Switzerland Sep. 2012. DOI: 10.1109/ITW.2012.6404674.

Shaocheng Liu, Qi Chen, and Minquan Cheng

Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4

• 41 extreme rays of Γ_4 can be classified into the following 11 types.

•
$$U_{1,1}^{i}$$
, $i \in N_{4}$;
• $U_{1,2}^{\alpha}$, $\alpha \subseteq N_{4}$, $|\alpha| = 2$;
• $U_{1,3}^{\alpha}$, $\alpha \subseteq N_{4}$, $|\alpha| = 3$;
• $U_{2,3}^{\alpha}$, $\alpha \subseteq N_{4}$, $|\alpha| = 3$;
• $U_{1,4}^{\alpha}$;
• W_{2}^{α} , $\alpha \subseteq N_{4}$, $|\alpha| = 2$;

- U_{2,4};
- $U_{3,4};$ • $\hat{U}_{2,5}^{i}$, $i \in N_4;$
- $\hat{U}_{3,5}^{i}$, $i \in N_4$; • $\hat{U}_{3,5}^{i}$, $i \in N_4$;

•
$$V_8^{\alpha}$$
, $\alpha \subseteq N_4$, $|\alpha| = 2$;

Extreme ray E	Entropy region $E^* = E \cap \Gamma_4^*$	Figures				
$U_{1,1}^1, U_{1,2}^{12}, U_{1,3}^{123}, U_{1,4}$	$\{a\mathbf{r}: a \geq 0\}$	···· · ··· · ··· · · · · · · · · · · ·				
$U_{2,3}^{123}, W_2^{14}, U_{3,4}$	$\{ar: a = \log k \text{ for some positive } k \in \mathbb{Z}\}$	0 log 2 log 3 log 4 log 5 log 6				
U _{2,4}	$\{a\mathbf{r}: a = \log k \text{ for some positive } k \in \mathbb{Z}, k \neq 2, 6\}.$	0 log 2 log 3 log 4 log 5 log 6				
$\hat{U}^1_{2,5}$	$\{a\mathbf{r}: a = \log k \text{ for some positive } k \in \mathbb{Z}\}$	O log 2 log 3 log 4 log 5 log 6				
$\hat{U}^1_{3,5}$	$\{a\mathbf{r}: a = \log k \text{ for some positive } k \in \mathbb{Z}\}$	O log 2 log 3 log 4 log 5 log 6				
V ₈ ¹²	$\{a\mathbf{r}: a=0\}$	• • • • • • • • • • • • • • • • • • •				

Two-dimensional Face of Γ_4 Generating Algorithm

```
Input: The family \mathcal{F} of all 28 facets and the family \mathcal{E} of all 41 extreme rays of \Gamma_4.
Output: Upper triangle of a 41 \times 41 (0, 1)-matrix C, where C(i, j) = 1 if and component if the convex
    hull of the i-th extreme ray E_i and the j-th extreme ray E_i forms a 2-dimensional face of \Gamma_4.
 1: for 1 \le i \le i \le 41 do
 2:
       C(i, j) \leftarrow 1
 3:
        for k = 1 to 28 do
 4:
             if the k-th facet F_k contains both E_i and E_i, then
 5:
                 put F_{\ell} in \mathcal{F}'.
 6:
             end if
 7:
         end for
         for E \in \mathcal{E} \setminus \{E_i, E_i\} do
 8:
9:
             if E is contained in the face \bigcap_{F \in F'} F then
                  C(i, j) \leftarrow 0
10 \cdot
11:
                  break
12.
             end if
13:
         end for
14: end for
```

A catalogue of two-dimensional faces of Γ_4 (59 types)

	$U_{1,1}^{i}$	$U_{1,2}^{\alpha}$	$U_{1,3}^{\alpha}$	U _{1,4}	$U_{2,3}^{\alpha}$	W_2^{α}	U _{2,4}	U _{3,4}	$\hat{U}_{2,5}^{i}$	$\hat{U}_{3,5}^{i}$	V_8^{α}
		$(U^{12}_{1,2},U^1_{1,1})$	$(U_{1,3}^{123}, U_{1,1}^1)$		$(U_{2,3}^{123}, U_{1,1}^1)$	$(W_2^{14}, U_{1,1}^1)$			$(\hat{U}^1_{2,5}, U^1_{1,1})$	$(\hat{U}^1_{3,5}, U^1_{1,1})$	$(V_8^{12}, U_{1,1}^1)$
U ^j	$(U_{1,1}^1, U_{1,1}^2)$	12	12,	$(U_{1,4}, U_{1,1}^1)$	12	12	$(U_{2,4},U_{1,1}^1)$	$(U_{3,4},U_{1,1}^1)$	4	4	12
-1,1	6	$(U_{1,2}^{12}, U_{1,1}^3)$	$(U_{1,3}^{123}, U_{1,1}^4)$	4	$(U_{2,3}^{123}, U_{1,1}^4)$	$(\mathcal{W}_2^{34}, U^1_{1,1})$	4	4	$(\hat{U}_{2,5}^1, U_{1,1}^2)$	$(\hat{U}^1_{3,5}, U^2_{1,1})$	$(V_8^{12}, U_{1,1}^3)$
		12	4		4	12			12	12	12
						$(\mathcal{W}_2^{14}, U_{1,2}^{14})$					
$U_{1,2}^{\beta}$		$(U^{12}_{1,2},U^{13}_{1,2})$	$(U_{1,3}^{123}, U_{1,2}^{12})$		$(U^{123}_{2,3},U^{12}_{1,2})$	6					
	λ	12	12	$(U_{1,4}, U_{1,2}^{12})$	12	$(\mathcal{W}_2^{24}, U_{1,2}^{14})$	$(U_{2,4}, U_{1,2}^{12})$	$(U_{3,4}, U_{1,2}^{12})$	$(\hat{U}_{2,5}^1, U_{1,2}^{12})$	$(\hat{U}_{3,5}^1, U_{1,2}^{12})$	$(V_8^{12}, U_{1,2}^{13})$
		$(U_{1,2}^{12}, U_{1,2}^{34})$	$(U_{1,3}^{123}, U_{1,2}^{14})$	6	$(U_{2,3}^{123}, U_{1,2}^{14})$	24	6	6	12	12	24
		3	12		12	$(\mathcal{W}_2^{34}, U_{1,2}^{12})$					
						6					
$U^{\beta}_{1,3}$	Λ	N	$(U^{123}_{1,3},U^{124}_{1,3})$	$(U_{1,4}, U_{1,3}^{123})$	$(U_{2,3}^{123}, U_{1,3}^{124})$	$(\mathcal{W}_2^{14}, U_{1,3}^{124})$	$(U_{2,4}, U_{1,3}^{123})$	$(U_{3,4},U_{1,3}^{123})$	$(\hat{U}_{2,5}^1, U_{1,3}^{123})$	$(\hat{U}^1_{3,5}, U^{234}_{1,3})$	$(V_8^{12},U_{1,3}^{134})$
			6	4	12	12	4	4	12	4	12
U _{1,4}	Υ	Λ	`	\ \	$(U_{2,3}^{123}, U_{1,4})$ 4	0	0	$(U_{3,4}, U_{1,4})$	0	0	$(V_8^{12},U_{1,4})$
			`	`				1	-	-	6
u^{β}	\	\ \	\	\ \	$(U^{123}_{2,3},U^{124}_{2,3})$	$(\mathcal{W}_2^{12}, U_{2,3}^{134})$	$(U_{2,4}, U_{2,3}^{123})$	$(U_{3,4},U_{2,3}^{123})$	$(\hat{U}_{2,5}^1, U_{2,3}^{234})$	$(\hat{U}^1_{3,5}, U^{123}_{2,3})$	$(V_8^{12},U_{2,3}^{123})$
02,3	`	,	`	`	6	12	4	4	4	12	12
$\lambda \lambda \beta$	\ \	\ \	\ \	\ \	× 1	$(\mathcal{W}_2^{12}, \mathcal{W}_2^{13})$	$(U_{2,4},\mathcal{W}_2^{12})$	0	$(\hat{U}_{2,5}^1, \mathcal{W}_2^{12})$	$(\hat{U}^1_{3,5}, \mathcal{W}^{23}_2)$	0
VV2	`		`	`	12	6		12	12		
11.	\ \	\ \	\ \	\ \				0	$(\hat{U}^1_{2,5}, U_{2,4})$	$(\hat{U}^1_{3,5}, U_{2,4})$	0
02,4	`	· · · · ·	`	`	``	``	`		4	4	-
U _{3,4}	\ \	\ \	\ \		\ \	\ \	\ \	\ \	0	0	$(V_8^{12}, U_{3,4})$
	()	(`	``	`	`	`	`	5	5	6
$\hat{U}_{2,5}^{j}$	Λ	Λ	Λ	Λ	Λ	\	Λ	Λ	0	0	0
$\hat{U}_{3,5}^{j}$	Λ	Δ.	Δ.	Δ.	Δ.	Δ.	Δ.	Λ	\	0	0
V_8^β	Λ	Λ	Λ	Λ	Λ	Δ.	Λ	Λ	Ν.	N	0

Theorem 1 (13 types)

For $F = (E_1, E_2)$, where distinct E_i , i = 1, 2 contains a rank-1 matroid, any $\mathbf{h} \in F$ is entropic.

³Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv: 1104.3602 [cs.IT]

Theorem 1 (13 types)

For $F = (E_1, E_2)$, where distinct E_i , i = 1, 2 contains a rank-1 matroid, any $\mathbf{h} \in F$ is entropic.

Theorem 2 $\overline{(7 \text{ types}, [3])}$

For $F = (V_8^{12}, E)$, any $\mathbf{h} = (a, b) \in F$ is non-entropic if a and b are both positive.

³Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv: 1104.3602 [cs.IT]

Extensions from 2-dim faces of Γ_3

Theorem 3 (4 types)

For $F = (U_{2,3}^{123}, U_{1,2}^{12}), (W_2^{34}, U_{1,2}^{12}), (W_2^{14}, U_{1,3}^{124}), \text{ or } (\hat{U}_{2,5}^1, U_{1,3}^{123}), \mathbf{h} = (a, b) \in F$ is entropic if and only if $a + b \ge \log \lceil 2^a \rceil$.

The entropy functions on the faces of these cases have the same shape as the two-dimensional face $(U_{2,3}, U_{1,2}^{12})$ of Γ_3 .

Theorem 4 (13 types)

For $F = (U_{2,3}^{123}, U_{1,1}^1), (U_{2,3}^{123}, U_{1,1}^4), (U_{2,3}^{123}, U_{1,2}^{14}), (\mathcal{W}_2^{14}, U_{1,1}^1), (\mathcal{W}_2^{34}, U_{1,1}^1), (\mathcal{W}_2^{14}, U_{1,2}^{14}), (\mathcal{W}_2^{24}, U_{1,2}^{14}), (\hat{U}_{2,5}^1, U_{1,1}^1), (\hat{U}_{2,5}^1, U_{1,2}^{12}), (\hat{U}_{3,5}^1, U_{1,1}^1), (\hat{U}_{3,5}^1, U_{1,1}^2), (\hat{U}_{3,5}^1, U_{1,1}^1), (\hat{U}_{3,5}^1, U_{1,1}^1),$

The entropy functions of the faces on these cases have the same shape as the two-dimensional face $(U_{2,3}, U_{1,1}^1)$ of Γ_3 .

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4

How about the faces containing $U_{2,4}$?

$$\bigcup_{O}^{\bullet} \bigcup_{\log 2} \bigcup_{\log 3} \bigcup_{\log 4} \bigcup_{\log 5} \bigcup_{\log 6}^{\bullet}$$

Figure 3: $E_{U_{2,4}}^* := \{ a \cdot \mathbf{r}_{U_{2,4}} : a = \log k, k \neq 2, 6 \ k \in \mathbb{Z}^+ \}$

$$\bigcup_{O}^{\bullet} \bigcup_{\log 2}^{\bullet} \bigcup_{\log 3}^{\bullet} \bigcup_{\log 4}^{\bullet} \bigcup_{\log 5}^{\bullet} \bigcup_{\log 6}^{\bullet}$$
Figure 3: $E_{U_{2,4}}^* := \{ a \cdot \mathbf{r}_{U_{2,4}} : a = \log k, k \neq 2, 6 \ k \in \mathbb{Z}^+ \}$

Characterizing random vector $(X_i, i \in N_4)$ satisfies

- $X_i \perp X_j$ for each $1 \le i < j \le 4$
- X_k is a function of X_i and X_j for any $1 \le i < j \le 4$ and $k \in \{1, 2, 3, 4\} \setminus \{i, j\}$

Mutually orthogonal two latin squares

$$A := \begin{bmatrix} A & K & Q & J \\ Q & J & A & K \\ J & Q & K & A \\ K & A & J & Q \end{bmatrix}, \qquad B := \begin{bmatrix} \blacklozenge & \heartsuit & \diamondsuit & \clubsuit \\ \clubsuit & \diamondsuit & \heartsuit & \bigstar \\ \heartsuit & \blacklozenge & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \end{bmatrix}$$

- Two latin squres, each pair of symbols occurs exactly once.
- X_1, X_2, X_3 and X_4 are uniformly distributed on the rows, columns, symbols of the first square and symbols of the second square, respectively.

Mutually orthogonal two latin squares

$$A := \begin{bmatrix} A & K & Q & J \\ Q & J & A & K \\ J & Q & K & A \\ K & A & J & Q \end{bmatrix}, \qquad B := \begin{bmatrix} \blacklozenge & \heartsuit & \diamondsuit & \blacklozenge \\ \clubsuit & \diamondsuit & \heartsuit & \blacklozenge \\ \heartsuit & \blacklozenge & \clubsuit & \diamondsuit \\ \diamondsuit & \clubsuit & \diamondsuit \end{bmatrix}$$

- Two latin squres, each pair of symbols occurs exactly once.
- X_1, X_2, X_3 and X_4 are uniformly distributed on the rows, columns, symbols of the first square and symbols of the second square, respectively.

For this case, $k \neq 2, 6$

- $k \neq 2$: trivial
- $k \neq 6$: Euler's 36 officer problem

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4
0	1	2
1	2	0
2	0	1

0	1	2
2	0	1
1	2	0

is an OA(2, 4, 3) corresponding to the MOLS.

Definition 1 ([4],[5])

Given a loopless matroid $M = (N_n, \mathbf{r})$ with $\mathbf{r}(N_n) \ge 2$, a $k^{\mathbf{r}(N_n)} \times n$ array \mathbf{T}

- with columns index by N_n ,
- entries from N_k,

is called a variable-strength orthogonal array(VOA) induced by M with level k if for any $A \subseteq N_n$, $k^{\mathbf{r}(N_n)} \times |A|$ subarry of \mathbf{T} consisting of columns indexed by A satisfy the following condition:

• each row of this subarray occurs $k^{\mathbf{r}(N_n)-\mathbf{r}(A)}$ times.

We call such **T** a VOA(M, k).

 $^{^{4}}$ Qi Chen, Minquan Cheng, and Baoming Bai. "Matroidal entropy functions: a quartet of theories of information, matroid, design and coding". In: Entropy 23.3 (2021), pp. 1–11

⁵Q. Chen, M. Cheng, and B. Bai. "Matroidal Entropy Functions: Constructions, Characterizations and Representations". In: *IEEE Transactions* on Information Theory (2024), pp. 1–1. DOI: 10.1109/TIT.2024.3355942

Theorem 5 ([4],[5])

A random vector $\mathbf{X} = (X_i : i \in N_n)$ characterizes the matroidal entropy function log $k \cdot M$ for a connected matroid $M = (N_n, \mathbf{r})$ with rank $\mathbf{r}(N_n) \ge 2$ if and only if the random variable \mathbf{X} is uniformly distributed on the rows of a VOA(M, k).

⁴Qi Chen, Minquan Cheng, and Baoming Bai. "Matroidal entropy functions: a quartet of theories of information, matroid, design and coding". In: Entropy 23.3 (2021), pp. 1–11

⁵Q. Chen, M. Cheng, and B. Bai. "Matroidal Entropy Functions: Constructions, Characterizations and Representations". In: *IEEE Transactions* on Information Theory (2024), pp. 1–1. DOI: 10.1109/TIT.2024.3355942

Theorem 6

For $F = (U_{2,4}, U_{2,3}^{123})$, $\mathbf{h} = (a, b) \in F$ is entropic if and only if $a + b = \log k$, $a = H(\alpha)$ and $(a, b) \neq (\log 2, 0)$, $(\log 6, 0)$, where integer k > 0 and α is a partition of k.

$$\begin{split} H(X_{N_4}) &= H(X_{N_4-i}), \ i \in N_4 \\ H(X_{ij}) &= H(X_i) + H(X_j), i < j, i, j \in N_4, \\ H(X_{i\cup K}) + H(X_{j\cup K}) &= H(X_K) + H(X_{ij\cup K}), \\ |K| &= 2, K \subseteq \{1, 2, 3\}, \{i, j\} = N_4 \setminus K. \end{split}$$

which imply that

- X_i , i = 1, 2, 3 are uniformly distributed on N_k , and
- the distribution of X_4 can be any $\frac{\alpha}{k}$, where α is a number partition of k.

Semi-VOA $(U_{2,4}, k)$ induced by a partition p of N_k

$$\mathbf{h} = (a, b)$$
 with $a + b = \log 3$ and $a = H(\frac{1}{3}, \frac{2}{3})$

where $p = \{\{1\}, \{2,3\}\}$. Let $(X_i, i \in N_4)$ be uniformly distributed on the rows of \mathbf{T}_p , then

•
$$a = H(X_4) = H(\frac{1}{3}, \frac{2}{3}),$$

• $a + b = H(X_1) = H(X_2) = H(X_3) = \log 3.$

Definition 2

For $k^2 \times 4$ array **T**, it is called an almost VOA($U_{2,4}$, k) if both **T**(1,2,3) and **T**(1,2,4) are VOA($U_{2,3}$, k).

An almost-VOA $(U_{2,4}, 6)^3$

³Leonhard Euler. "Recherches sur un nouvelle espéce de quarrés magiques". In: Verhandelingen uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen (1782), pp. 85–239.

Shaocheng Liu, Qi Chen, and Minquan Cheng

Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4

Semi-VOA($U_{2,4}, 6$)

- • $\mathbf{T}^{al}(1,2,3)$ and $\mathbf{T}^{al}(1,2,4)$ are both VOA($U_{2,3},6$).
 - **T** is not a VOA($U_{2,4}, 6$) since there are 34 different pairs in the rows of **T**^{al}({3,4}), where (2,6) and (4,5) each occurs twice.

Semi-VOA($U_{2,4}, 6$)

- • $\mathbf{T}^{al}(1,2,3)$ and $\mathbf{T}^{al}(1,2,4)$ are both $VOA(U_{2,3},6)$.
 - **T** is not a $VOA(U_{2,4}, 6)$ since there are 34 different pairs in the rows of $T^{al}(\{3,4\})$, where (2,6) and (4,5) each occurs twice.
- • Consider a partition $p = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5, 6\}\}$ of N_6 .
 - Let \mathbf{T}_p be a 36 × 4 array such that $\mathbf{T}_p(N_3) = \mathbf{T}^{\mathrm{al}}(N_3)$ and each entry $\mathbf{T}_p(4)$ follows the mapping from those $\mathbf{T}^{\mathrm{al}}(4)$

$$\begin{array}{c} 1\mapsto 1\\ 2\mapsto 2\\ 3\mapsto 3\\ 4\mapsto 4\\ 5,6\mapsto 5\end{array}$$

Semi-VOA($U_{2,4}, 6$)

- • $\mathbf{T}^{al}(1,2,3)$ and $\mathbf{T}^{al}(1,2,4)$ are both $VOA(U_{2,3},6)$.
 - **T** is not a $VOA(U_{2,4}, 6)$ since there are 34 different pairs in the rows of $T^{al}(\{3,4\})$, where (2,6) and (4,5) each occurs twice.
- • Consider a partition $p = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5, 6\}\}$ of N_6 .
 - Let \mathbf{T}_p be a 36 × 4 array such that $\mathbf{T}_p(N_3) = \mathbf{T}^{\mathrm{al}}(N_3)$ and each entry $\mathbf{T}_p(4)$ follows the mapping from those $\mathbf{T}^{\mathrm{al}}(4)$

$$1 \mapsto 1$$
$$2 \mapsto 2$$
$$3 \mapsto 3$$
$$4 \mapsto 4$$
$$5, 6 \mapsto 5$$

• for a partiton p' coarser than p, we can obtain a $\mathbf{T}_{p'}$ similarly

	1	1	1	1	3	1	3	3	5	1	5	5
	1	2	2	5	3	2	4	5	5	2	1	4
	1	3	3	4	3	3	1	2	5	3	2	3
	1	4	4	5	3	4	2	5	5	4	6	1
	1	5	5	3	3	5	6	4	5	5	4	2
т	1	6	6	2	3	6	5	1	5	6	3	5
p	2	1	2	2	4	1	4	4	6	1	6	5
	2	2	3	1	4	2	6	3	6	2	5	2
	2	3	6	5	4	3	5	5	6	3	4	1
	2	4	5	4	4	4	3	2	6	4	1	3
	2	5	1	5	4	5	2	1	6	5	3	5
	2	6	4	3	4	6	1	5	6	6	2	4

	1	1	1	1	3	1	3	3	5	1	5	5
	1	2	2	5	3	2	4	5	5	2	1	4
	1	3	3	4	3	3	1	2	5	3	2	3
	1	4	4	5	3	4	2	5	5	4	6	1
	1	5	5	3	3	5	6	4	5	5	4	2
т	1	6	6	2	3	6	5	1	5	6	3	5
p	2	1	2	2	4	1	4	4	6	1	6	5
	2	2	3	1	4	2	6	3	6	2	5	2
	2	3	6	5	4	3	5	5	6	3	4	1
	2	4	5	4	4	4	3	2	6	4	1	3
	2	5	1	5	4	5	2	1	6	5	3	5
	2	6	4	3	4	6	1	5	6	6	2	4

Let (X_i, i ∈ N₄) be uniformly distributed on the rows of T_p and the entropy function of (X_i, i ∈ N₄) corresponds to the "red" polymatrioid in Fig.4.

1	1	1	1	3	1	3	3	5	1	5	5
1	2	2	5	3	2	4	5	5	2	1	4
1	3	3	4	3	3	1	2	5	3	2	3
1	4	4	5	3	4	2	5	5	4	6	1
1	5	5	3	3	5	6	4	5	5	4	2
- . ¹	6	6	2	3	6	5	1	5	6	3	5
^p 2	1	2	2	4	1	4	4	6	1	6	5
2	2	3	1	4	2	6	3	6	2	5	2
2	3	6	5	4	3	5	5	6	3	4	1
2	4	5	4	4	4	3	2	6	4	1	3
2	5	1	5	4	5	2	1	6	5	3	5
2	6	4	3	4	6	1	5	6	6	2	4

- Let (X_i, i ∈ N₄) be uniformly distributed on the rows of T_p and the entropy function of (X_i, i ∈ N₄) corresponds to the "red" polymatrioid in Fig.4.
- Semi-VOA will shed light on open problems in combinatorial design theory.

Theorem 7

For $F = (U_{2,4}, W_2^{34})$, $\mathbf{h} = (a, b) \in F$ is entropic if and only if $a + b = \log k$ for integer k > 0, and there exists an almost $VOA(U_{2,4}, k) \mathbf{T}$, and

 $a = H(\alpha) - \log k$,

where $\alpha = (\alpha_{x_3,x_4} > 0 : x_3, x_4 \in N_k)$ and α_{x_3,x_4} denotes the times of the row (x_3, x_4) that occurs in T(3, 4).

Entropy functions on $(U_{2,4}, \mathcal{W}_2^{34})$

Definition 3

Given $A, B \subseteq N_k$ and a VOA $(U_{2,3}, k)$ **T**, a $|A||B| \times 3$ subarray **T**' of **T** is called induced by A and B if rows in **T**'(1,2) are exactly those pairs in $A \times B$.

Definition 3

Given $A, B \subseteq N_k$ and a VOA $(U_{2,3}, k)$ **T**, a $|A||B| \times 3$ subarray **T**' of **T** is called induced by A and B if rows in **T**'(1,2) are exactly those pairs in $A \times B$.

Definition 4

Given $A, B \subseteq N_k$ with |A||B| = k and a $VOA(U_{2,3}, k)$ **T**,

- a subarray T' of T induced by A and B is called a unit subarray of T if each e ∈ N_k occurs exactly once in T'(3).
- $\{\mathbf{T}_i, i \in N_k\}$ is called an uniform decomposition of a $\operatorname{VOA}(U_{2,3}, k) \mathbf{T}$ if
 - each **T**_i is a unit subarray of **T** and

•
$$\biguplus_{i\in N_k} A_i \times B_i = N_k^2.$$

An example of uniform decomposition

1 1 1 1	1 2 3 4	1 4 2 3				
2	1	2	1 1 1	2 1 2	3 1 3	331
2	2	3			3 1 3	5 5 4
2	3	1	$\mathbf{T}_1: \frac{1}{1}, \frac{2}{2}, \frac{4}{2}$	$T_2: 2 2 3$	$T_3: \begin{array}{c} 3 & 2 & 1 \\ 1 & 1 & 1 \end{array}$	$\mathbf{T}_4 : \begin{smallmatrix} 3 & 4 & 2 \\ 4 & 2 & 2 \end{smallmatrix}$
- ²	4	4	1 3 2	2 3 1	4 1 4	4 3 3
³	1	3	1 4 3	244	4 2 2	4 4 1
3	2	1	$\Delta_{1} = \{1\}$	$A_{2} = \{2\}$	$\Lambda_{2} = \{3, 4\}$	$A_{1} = \{3, 4\}$
3	3	4	$A_1 - \{1\}$	$A_2 - \lfloor 2 \rfloor$	$A_3 = \{3, 4\}$	$A_4 = \{3, 4\}$
3	4	2	$B_1 = N_4$	$B_2 = N_4$	$B_3 = N_2$	$D_4 = \{3, 4\}$
4	1	4				
4	2	2				
4	3	3				
4	4	1				

Theorem 8

For $F = (W_2^{12}, W_2^{13})$, $\mathbf{h} = (a, b) \in F$ is entropic if and only if there exists a uniform decomposition $\{\mathbf{T}_1, \ldots, \mathbf{T}_k\}$ of a $\operatorname{VOA}(U_{2,3}, k) \mathbf{T}$ such that

$$a = \log k - rac{1}{k} \sum_{i=1}^{k} \log |B_i|, \quad b = \log k - rac{1}{k} \sum_{i=1}^{k} \log |A_i|.$$

where the subarray \mathbf{T}_i of \mathbf{T} are induced by A_i and B_i for $i \in N_k$.

Entropy functions on $(\mathcal{W}_2^{12}, \mathcal{W}_2^{13})$

Figure 6: The face $(\mathcal{W}_2^{12}, \mathcal{W}_2^{13})$

Definition 5

Given $A, B \subseteq N_k$ with $|A| = |B| = k_1 \le k$ and a $VOA(U_{2,3}, k)$ **T**,

- a subarray **T**' of **T** induced by A and B is called a suborder VOA of **T** if **T**' is a VOA($U_{2,3}, k_1$).
- $\{\mathbf{T}_i, i \in N_t\}$ is called a suborder decomposition of a $VOA(U_{2,3}, k) \mathbf{T}$ if
 - each \mathbf{T}_i is a suborder VOA of \mathbf{T} and
 - $\biguplus_{i\in N_t} A_i \times B_i = N_k^2.$

An example of suborder decomposition

Theorem 9

For $F = (\hat{U}_{2,5}^1, U_{2,3}^{234})$, $\mathbf{h} = (a, b) \in F$ is entropic if and only if $a + b = \log k$ for integer k > 0, and there exists a suborder decomposition $\{\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_t\}$ of a VOA $(U_{2,3}, k)$ **T** such that

$$a=\frac{1}{2}H(\frac{|A_i|^2}{k^2}:i\in N_t),$$

where the subarray \mathbf{T}_i of \mathbf{T} are induced by A_i and B_i for $i \in N_t$.

Figure 7: The face $(\hat{U}_{2,5}^1, U_{2,3}^{234})$

The "red" polymatroid corresponds to the suborder decomposition in the above example.

$$a = \frac{1}{2}H(\frac{4}{16}, \frac{4}{16}, \frac{4}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16})$$
$$= \frac{1}{2}[H(\frac{4}{16}, \frac{4}{16}, \frac{4}{16}, \frac{4}{16}) + \frac{1}{4}\log 4]$$
$$= \frac{5}{8}\log 4 = 1.25$$

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$ \begin{array}{l} (U_{1,1}^1, U_{1,1}^2), (U_{1,2}^{12}, U_{1,1}^1), (U_{1,2}^{12}, U_{1,1}^3), \\ (U_{1,2}^{12}, U_{1,2}^{13}), (U_{1,2}^{12}, U_{1,2}^{34}), (U_{1,3}^{123}, U_{1,1}^1), \\ (U_{1,3}^{123}, U_{1,1}^4), (U_{1,3}^{123}, U_{1,2}^{12}), (U_{1,3}^{123}, U_{1,2}^{14}), \\ (U_{1,3}^{123}, U_{1,3}^{124}), (U_{1,4}, U_{1,1}^1), (U_{1,4}, U_{1,2}^{12}), \\ (U_{1,3}^{123}, U_{1,3}^{124}), (U_{1,4}, U_{1,3}^{12}). \end{array} $	$\{a\mathbf{r}_1+b\mathbf{r}_2:a\geq 0,b\geq 0\}$	
$(U_{2,3}^{123}, U_{1,2}^{12}), (W_{2^{34}}^{34}, U_{1,2}^{12}), (W_{2^{14}}^{14}, U_{1,3}^{124}).$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a + b \ge \log k \text{ and} \\ \log(k-1) \le a \le \log k \\ \text{for positive integer } k\}$	b \log^2 O $\log^2 \log^3 \log^4$ a
$ \begin{array}{c} (U_{2,3}^{123}, U_{1,1}^1), (U_{2,3}^{123}, U_{1,1}^1), (U_{2,3}^{123}, U_{1,2}^{14}), \\ (\mathcal{W}_2^{14}, U_{1,1}^1), (\mathcal{W}_2^{34}, U_{1,1}^1), (\mathcal{W}_2^{14}, U_{1,2}^{14}), \\ (\mathcal{W}_2^{24}, U_{1,2}^{14}). \end{array} $	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a = \log k \text{ for} \\$ some positive integer $k, b \ge 0\}$	b O $\log 2 \log 3 \log 4$ a

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$(U_{2,3}^{123},U_{1,3}^{124})$	$\{a\mathbf{r_1} + b\mathbf{r_2} : a = \log k \text{ for}$ some positive integer $k, b \ge 0\}$	$ \begin{array}{c c} b \\ \hline \\ O \end{array} \\ \hline \\ O \\ \hline \\ O \\ O \\ O \\ O \\ O \\ O \\ O$
$(U^{123}_{2,3},U^{124}_{2,3})$	$\{a\mathbf{r_1} + b\mathbf{r_2}: a = \log k_1, b = \log k_2$ for some positive integer $k_1, k_2\}$	b log4 log3 log2 O log2 log3 log4, a
$(U_{2,3}^{123}, U_{1,4})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a \ge 0, b > 0 \text{ or } (a, b) = (\log k, 0)$ for positive integer $k\}$	

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$(U_{2,4}, U_{1,3}^{123})$	$ \{a\mathbf{r}_1 + b\mathbf{r}_2 : a + b \ge \log k \text{ and } \log(k-1) < a \le \log k $ for positive integer $k \ne 2, 6$; or $a + b \ge \log(k+1)$ and $\log(k-1) < a \le \log k $ for $k = 2, 6$ }	b log3 O log3 log3 log4 log5 log7 a
$(U_{2,4}, U_{1,2}^{12})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a = \log k \text{ for positive integer } k \neq 2, 6;$ $a = \log 2, \ b \ge \log 2; \text{ or}$ $a = \log 6, \ b \ge \log 2\}$	$\begin{array}{c c} b \\ \hline \\ \log^2 \\ (\log 2, \log 2) \\ O \\ \end{array} \begin{array}{c c} \\ \log^2 \\ \log^2 \\ \log^2 \\ \log^3 \\ \log^4 \log^5 \log^6 \\ a \end{array} \begin{array}{c} (\log 6, \log 2) \\ (\log 6, \log 2) \\ \log^2 \\ \log^2 \\ a \end{array} \right)$
$(U_{2,4}, W_2^{12})$	$ \begin{aligned} \{ \mathbf{ar}_1 + \mathbf{br}_2 : \mathbf{a} + \mathbf{b} &= \log k \text{ for integer } k > 0, \text{ and } \\ \text{there exists a } k^2 \times 4 \text{ array } \mathbf{T} \text{ such that} \\ \mathbf{T}(1,3,4) \text{ and } \mathbf{T}(2,3,4) \text{ are VOA}(U_{2,3},k), \text{ and } \\ a &= H(\alpha) - \log k, \\ \text{where } \alpha &= (\alpha_{x_1,x_2} > 0 : x_1, x_2 \in N_k) \text{ and} \\ \alpha_{x_1,x_2} \text{ denotes the times of the row } (x_1, x_2) \text{ that} \\ \text{ occurs in } \mathbf{T}(1,2) \} \end{aligned} $	b $\log 3$ (0.5,1) (1,1) $\log 2$ (1,1) (1,1) (1.5,0.5) O $\log 2$ $\log 3 \log 4$ a

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$(U_{3,4}, U_{1,3}^{123})$	$\{a\mathbf{r_1} + b\mathbf{r_2} : a = \log k \text{ for}$ some positive integer k, $b \ge 0\}$	b O O O O O O O O
$(U_{3,4}, U_{1,4})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a \ge 0, b > 0 \text{ or } (a, b) = (\log k, 0)$ for positive integer $k\}$	
$(\hat{U}^{1}_{3,5}, U^{234}_{1,3})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a = \log k \text{ for} \\$ some positive integer $k, b \ge 0\}$	b O O O O O O O O

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$(\hat{U}^1_{3,5}, U^{123}_{2,3})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a = \log k_1, b = \log k_2 \text{ for}$ some positive integer $k_1, k_2\}$	b log4 log3 log2 O log2 log3 log4, a
$(\hat{U}^1_{3,5},\mathcal{W}^{23}_2)$	${a\mathbf{r}_1 + b\mathbf{r}_2 : a + b = \log k \text{ for some integer } k > 0}$	b log4 log2 O Dog2 log3 log4 a
$(U_{2,4}, U^1_{1,1})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a = \log k$ for integer $k \neq 2, 6$ or $a = \log 6, b \ge \log 2\} \subseteq F^*$ and $\{a\mathbf{r}_1 + b\mathbf{r}_2 : a \ne \log k$ for some integer $k > 0$ or $a = \log 2\} \cap F^* = \emptyset$	$\bigcup_{\substack{\log 2\\0}}^{b} \underbrace{\left(\log 6, \log 2\right)}_{\log 2 - \log 3 - \log 4 \log 6 \log 6} \xrightarrow{\circ} a$

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$(\hat{U}_{3,5}^{1},U_{2,4})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a + b = \log k \text{ for integer } k \neq 2, 6; \\ (a, b) = (\log 2, 0); \text{ or } \\ a + b = \log 6, a \geq \log 2\} \subseteq F^* \text{ and } \\ \{a\mathbf{r}_1 + b\mathbf{r}_2 : a + b \neq \log k \text{ for some integer } k > 0; \\ a + b = \log 2, a < \log 2; \text{ or } \\ (a, b) = (0, \log 6)\} \cap F^* = \emptyset.$	b log5 log5 log4 log3 log2 O log2 log3 $log4log5log6a$
$(\mathcal{W}_{2}^{12},\mathcal{W}_{2}^{13})$	$\begin{array}{l} \{a\mathbf{r}_1+b\mathbf{r}_2: \text{ there exists an entry-subarray decomposition} \\ \{\mathbf{T}_1,\ldots,\mathbf{T}_k\} \text{ of a } \mathrm{VOA}(U_{2,3},k) \mathbf{T} \text{ such that} \\ a = \log k - \frac{1}{k}\sum_{i=1}^{k}\log B_i , \\ b = \log k - \frac{1}{k}\sum_{i=1}^{k}\log A_i , \\ where \text{ the subarray } \mathbf{T}_i \text{ of } \mathbf{T} \text{ are induced by} \\ A_i \text{ and } B_i \text{ for } i \in N_k\} \end{array}$	b log4 log3 log2 (1,1) (1,5,0.5) O log2 log3 log4 a
$(\hat{U}^1_{2,5}, U^{234}_{2,3})$	$\{a\mathbf{r}_1 + b\mathbf{r}_2 : a + b = \log k \text{ for some positive } k \text{ and} \\ \text{there exists a VOA decomposition } \{\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_t\} \\ \text{of a VOA}(U_{2,3}, k) \mathbf{T} \text{ such that} \\ a = \frac{1}{2}H(\frac{ A_i ^2}{k^2} : i \in N_t), \\ \text{where subarray } T \text{ are induced by} \\ A_i \text{ and } B_i \text{ for } i \in N_t\}$	$\begin{array}{c} b \\ \log 2 \\ \log 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

Two-dimensional faces F	Entropy region $F^* = F \cap \Gamma_4^*$	Figures
$(\hat{U}^1_{2,5}, U_{2,4})$	$ \begin{aligned} \{a\mathbf{r}_1 + b\mathbf{r}_2 : a + b &= \log k \text{ and there exists a VOA}(U_{2,3}, k) \mathbf{T}' \text{ and} \\ & \text{its loose orthogonal array } \mathbf{T}_1 \text{ such that} \\ & a &= H(\frac{\alpha_1}{k^2}, \frac{\alpha_2}{k^2}, \dots, \\ & \frac{\alpha_t}{k^2}) - \log k, \\ & \text{where } \alpha_i \text{ denotes the times of the row } x_1 \text{ that occurs in } \mathbf{T}_1 \end{aligned} $	$\begin{array}{c} b & 1 & (0.30, 1.26) \\ & & 1 & (0.33, 1.26) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & 1 & (0.61, 0.57) \\ & & & & 1 & (0.61, 0.57) \\ & & & & 1 & (0.61, 0.57) \\ & & & & 1 & (0.61, 0.57) \\ & & & & 1 & (0.61, 0.57) \\ & & & & & 1 & (0.61, 0.57) \\ & & & & & & 1 & (0.61, 0.57) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$
$ \begin{pmatrix} V_8^{12}, U_{1,1}^1 \rangle, (V_8^{12}, U_{1,1}^3), (V_8^{12}, U_{1,2}^1) \\ (V_8^{12}, U_{1,3}^{134}), (V_8^{12}, U_{1,4}) \end{pmatrix} $	$\{a\mathbf{r}_1+b\mathbf{r}_2:a=0,b\geq 0\}$	b : 0
$(V_8^{12}, U_{2,3}^{123}), (V_8^{12}, U_{3,4})$	$\{a\mathbf{r}_1+b\mathbf{r}_2:a=0,b=\log k ext{ for some integer }k>0\}$	b log1 log3 log2 O

Shaocheng Liu

Minquan Cheng

[1]S. Liu and Q. Chen. "Entropy Functions on Two-Dimensional Faces of Polymatroidal Region of Degree Four". In: 2023 IEEE International Symposium on Information Theory (ISIT). 2023
[2]S. Liu and Q. Chen. "Entropy Functions on Two-Dimensional Faces of Polymatroidal Region of Degree Four: Part I: Problem Formulation and Graph-Coloring Approach". In preparation
[3]S. Liu, Q. Chen and M. Cheng. "Entropy Functions on Two-Dimensional Faces of Polymatroidal Region of Degree Four: Part I: Information Theoretic Constraints Breed New Combinatorial Structures". In preparation
Thank You!

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4