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Entropy functions

Entropy function
Let Nn = {1, 2, . . . , n}. For a discrete random vector X = (Xi , i ∈ Nn), the entropy
function of X is a set function h : 2Nn → R defined by

h(A) = H(XA),

for any A ⊆ Nn.

Entropy space

Hn ≜ R2Nn

Entropy region Γ∗
n

Γ∗
n ≜ {h ∈ Hn : ∃ X, h is the entropy function of X}
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Shannon outer bound Γ∗
n

Shannon-type inequalities
For any A, B ⊆ Nn,

H(XA) ≥ 0,

H(XA) ≤ H(XB) if A ⊆ B,

H(XA) + H(XB) ≥ H(XA∩B) + H(XA∪B).

Polymatroidal region Γn

Γn ≜ {h ∈ Hn : h(A) ≥ 0,

h(A) ≤ h(B), if A ⊆ B,

h(A) + h(B) ≥ h(A ∩ B) + h(A ∪ B).}
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Γ∗
n and Γn

Relations between Γ∗
n and Γn

Γ∗
n ⊆ Γn

Γ∗
1 = Γ1, Γ∗

2 = Γ2

Γ∗
3 ⊊ Γ3, but Γ∗

3 = Γ3

Γ∗
n = Γn, n ≤ 3,

Γ∗
n ⊊ Γn, n ≥ 4, due to the existence of non-Shannon-type information

inequalities.

Non-Shannon-type Information inequalities
(Zhang-Yeung inequality, 1998) Given random variables X1, X2, X3 and X4,

2I(X3; X4) ≤ I(X1; X2) + I(X1; X3, X4) + 3I(X3; X4|X1) + I(X3; X4|X2).
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Faces of a polyhdral cone

Let C ⊆ Rd be a full-dimensional polyhedral cone. For a hyperplane P containing
O in Rd , if C ⊆ P+, where P+ is one of the two halfspaces corresponding to P,

F ≜ C ∩ P

is called a (proper) face of C , while C itself is its improper face.

F is called a facet of C if dim F = d − 1, and
F is an extreme ray of C if dim F = 1.
H-representation: each face F can be written as the intersection of the facets
containing F .
V-representation: each face F can be written as the convex combination of the
extreme rays F contains.
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Faces of Γn: facets

Elemental inequalities

h(Nn) ≥ h(Nn \ {i}) i ∈ Nn;
h(K ∪ i) + h(K ∪ j) ≥ h(K ) + h(K ∪ ij) i < j , i , j ∈ Nn, K ⊆ Nn \ {i , j}

Each facet F = Γn ∩ P one-to-one corresponds to a unique P which is the
hyperplane by setting an elemental inequality by equality
There are totally n +

(n
2
)
2n−2 elemental inequality, and so n +

(n
2
)
2n−2 facets of Γn
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Faces of Γn: extreme rays

Obtain extreme rays by facets
Extreme rays of Γn can be otained from the facets by the software lrs for small number
of n.

for n = 2, there exist 3 extreme rays, while there are 3 facets
for n = 3, there exist 8 extreme rays, while there are 9 facets
for n = 4, there exist 41 extreme rays, while there are 28 facets
for n = 5, there exist over 106 extreme rays, while there are 85 facets

Extreme ray representation

E = {ar : a ≥ 0, }

where r is the minimal integer polymatroid on the ray.
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Inequalities characterizations are speceial cases of face characterizations

Constrained information inequalities
For a set C of constraints of equalities obtained by setting the Shannon-type
inequalities be equalities,

F = Γn ∩ C is a face of Γn, and
the constrained information inequalities under C determines an outer bound of the
entropy functions on F

Unconstrained information inequalities
For unconstrained information inequalities, we take the improper face F = Γn.
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Entropy functions on faces of Γ3: extreme rays

Extreme rays of Γ3

8 extreme rays in 4 types are in the form
EM = {arM : a ≥ 0, }where M are

U i
1,1, i ∈ N3;

Uα
1,2, α ⊆ N3, |α| = 2;

U1,3;
U2,3

and Uα
k,m is the matroid on N3 with rank function r(A) = min{|A ∩ α|, k}, A ⊆ N3, and

α = N3 when it is omitted.

Entropy functions on extreme rays
The first 7 extreme rays in 3 types are all entropic.
E ∗

U2,3
= EU2,3 ∩ Γ∗

n = {arU2,3 : a ≥ 0, a = log k for some positive k ∈ Z}.a
. . .

log 2 log 3 log 4 log 5 log 6O

aZhen Zhang and Raymond W Yeung. “A non-Shannon-type conditional inequality of information quantities”. In: IEEE Transactions on
Information Theory 43.6 (1997), pp. 1982–1986.
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Entropy functions on faces of Γ3: 2-dim faces
F = (E1, E2) = {ar1 + br2 : a, b ≥ 0}.
Only two types of faces containing U2,3 need to be further characterized:
(U2,3, U12

1,2) and (U2,3, U1
1,1), which has been done by Matúš1, and Chen and

Yeung2, respectively.

a

b

O log2 log3 log4

log2

Figure 1: The region where
a + b ≥ log ⌈2a⌉.

a

b

O log2 log3 log4

Figure 2: The region where
a = log k for integer k > 0,b ≥ 0.

1František Matúš. “Piecewise linear conditional information inequality”. In: IEEE Transactions on Information Theory 52.1 (2005), pp. 236–238.
2Qi Chen and Raymond W. Yeung. “Characterizing the entropy function region via extreme rays”. In: IEEE Information Theory Workshop.

Lausanne, Switzerland Sep. 2012. doi: 10.1109/ITW.2012.6404674.
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The extreme rays of Γ4

41 extreme rays of Γ4 can be classified into the following 11 types.

U i
1,1, i ∈ N4;

Uα
1,2, α ⊆ N4, |α| = 2;

Uα
1,3, α ⊆ N4, |α| = 3;

Uα
2,3, α ⊆ N4, |α| = 3;

U1,4;
Wα

2 , α ⊆ N4, |α| = 2;

U2,4;
U3,4;
Û i

2,5, i ∈ N4;
Û i

3,5, i ∈ N4;
V α

8 , α ⊆ N4, |α| = 2;
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Entropy functions on the extreme rays of Γ4

Extreme ray E Entropy region E ∗ = E ∩ Γ∗
4 Figures

U1
1,1, U12

1,2, U123
1,3 , U1,4 {ar : a ≥ 0}

. . .

O

U123
2,3 , W14

2 , U3,4 {ar : a = log k for some positive k ∈ Z}
. . .

log 2 log 3 log 4 log 5 log 6O

U2,4 {ar : a = log k for some positive k ∈ Z, k ̸= 2, 6}.
. . .

log 2 log 3 log 4 log 5 log 6O

Û1
2,5 {ar : a = log k for some positive k ∈ Z}

. . .

log 2 log 3 log 4 log 5 log 6O

Û1
3,5 {ar : a = log k for some positive k ∈ Z}

. . .

log 2 log 3 log 4 log 5 log 6O

V 12
8 {ar : a = 0}

. . .

O
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Two-dimensional Face of Γ4 Generating Algorithm

Input: The family F of all 28 facets and the family E of all 41 extreme rays of Γ4.
Output: Upper triangle of a 41× 41 (0, 1)-matrix C ,where C(i , j) = 1 if and component if the convex

hull of the i-th extreme ray Ei and the j-th extreme ray Ej forms a 2-dimensional face of Γ4.
1: for 1 ≤ i < j ≤ 41 do
2: C(i , j)← 1
3: for k = 1 to 28 do
4: if the k-th facet Fk contains both Ei and Ej , then
5: put Fk in F ′.
6: end if
7: end for
8: for E ∈ E \ {Ei , Ej} do
9: if E is contained in the face ∩F∈F′ F then

10: C(i , j)← 0
11: break
12: end if
13: end for
14: end for
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A catalogue of two-dimensional faces of Γ4 (59 types)
U i

1,1 Uα
1,2 Uα

1,3 U1,4 Uα
2,3 Wα

2 U2,4 U3,4 Û i
2,5 Û i

3,5 V α
8

U j
1,1

(U12
1,2, U1

1,1) (U123
1,3 , U1

1,1) (U123
2,3 , U1

1,1) (W14
2 , U1

1,1) (Û1
2,5, U1

1,1) (Û1
3,5, U1

1,1) (V 12
8 , U1

1,1)

(U1
1,1, U2

1,1) 12 12, (U1,4, U1
1,1) 12 12 (U2,4, U1

1,1) (U3,4, U1
1,1) 4 4 12

6 (U12
1,2, U3

1,1) (U123
1,3 , U4

1,1) 4 (U123
2,3 , U4

1,1) (W34
2 , U1

1,1) 4 4 (Û1
2,5, U2

1,1) (Û1
3,5, U2

1,1) (V 12
8 , U3

1,1)

12 4 4 12 12 12 12

Uβ
1,2 \

(W14
2 , U14

1,2)

(U12
1,2, U13

1,2) (U123
1,3 , U12

1,2) (U123
2,3 , U12

1,2) 6

12 12 (U1,4, U12
1,2) 12 (W24

2 , U14
1,2) (U2,4, U12

1,2) (U3,4, U12
1,2) (Û1

2,5, U12
1,2) (Û1

3,5, U12
1,2) (V 12

8 , U13
1,2)

(U12
1,2, U34

1,2) (U123
1,3 , U14

1,2) 6 (U123
2,3 , U14

1,2) 24 6 6 12 12 24

3 12 12 (W34
2 , U12

1,2)

6

Uβ
1,3 \ \

(U123
1,3 , U124

1,3 ) (U1,4, U123
1,3 ) (U123

2,3 , U124
1,3 ) (W14

2 , U124
1,3 ) (U2,4, U123

1,3 ) (U3,4, U123
1,3 ) (Û1

2,5, U123
1,3 ) (Û1

3,5, U234
1,3 ) (V 12

8 , U134
1,3 )

6 4 12 12 4 4 12 4 12

U1,4 \ \ \ \
(U123

2,3 , U1,4)
0 0

(U3,4, U1,4)
0 0

(V 12
8 , U1,4)

4 1 6

Uβ
2,3 \ \ \ \

(U123
2,3 , U124

2,3 ) (W12
2 , U134

2,3 ) (U2,4, U123
2,3 ) (U3,4, U123

2,3 ) (Û1
2,5, U234

2,3 ) (Û1
3,5, U123

2,3 ) (V 12
8 , U123

2,3 )

6 12 4 4 4 12 12

Wβ
2 \ \ \ \ \

(W12
2 , W13

2 ) (U2,4, W12
2 )

0
(Û1

2,5, W12
2 ) (Û1

3,5, W23
2 )

0
12 6 12 12

U2,4 \ \ \ \ \ \ \ 0
(Û1

2,5, U2,4) (Û1
3,5, U2,4)

0
4 4

U3,4 \ \ \ \ \ \ \ \ 0 0
(V 12

8 , U3,4)

6

Û j
2,5 \ \ \ \ \ \ \ \ 0 0 0

Û j
3,5 \ \ \ \ \ \ \ \ \ 0 0

V β
8 \ \ \ \ \ \ \ \ \ \ 0
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All-entropic and non-entropic faces

Theorem 1 (13 types)

For F = (E1, E2), where distinct Ei , i = 1, 2 contains a rank-1 matroid, any h ∈ F is
entropic.

Theorem 2 (7 types,[3])

For F = (V 12
8 , E ), any h = (a, b) ∈ F is non-entropic if a and b are both positive.

3Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv:
1104.3602 [cs.IT]
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Extensions from 2-dim faces of Γ3

Theorem 3 (4 types)

For F = (U123
2,3 , U12

1,2), (W34
2 , U12

1,2),(W14
2 , U124

1,3 ), or (Û1
2,5, U123

1,3 ), h = (a, b) ∈ F is
entropic if and only if a + b ≥ log⌈2a⌉.

a

b

O log2 log3 log4

log2

The entropy functions on the faces of these cases have the same shape as the
two-dimensional face (U2,3, U12

1,2) of Γ3.
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Extension from 2-dimensional faces of Γ3

Theorem 4 (13 types)

For F = (U123
2,3 , U1

1,1),(U123
2,3 , U4

1,1), (U123
2,3 , U14

1,2),(W14
2 , U1

1,1),(W34
2 , U1

1,1),(W14
2 , U14

1,2),
(W24

2 , U14
1,2),(Û1

2,5, U1
1,1),(Û1

2,5, U2
1,1),(Û1

2,5, U12
1,2),(Û1

3,5, U1
1,1), (Û1

3,5, U2
1,1), and

(Û1
3,5, U12

1,2) h = (a, b) ∈ F is entropic if and only if a = log k for integer k > 0.

a

b

O log2 log3 log4

The entropy functions of the faces on these cases have the same shape as the
two-dimensional face (U2,3, U1

1,1) of Γ3.
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How about the faces containing U2,4?

. . .

log 2 log 3 log 4 log 5 log 6O

Figure 3: E∗
U2,4

:= {a · rU2,4 : a = log k, k ̸= 2, 6 k ∈ Z+}

Characterizing random vector (Xi , i ∈ N4) satisfies
Xi ⊥ Xj for each 1 ≤ i < j ≤ 4
Xk is a function of Xi and Xj for any 1 ≤ i < j ≤ 4 and k ∈ {1, 2, 3, 4} \ {i , j}
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Mutually orthogonal two latin squares

Two latin squres, each pair of symbols occurs exactly once.
X1, X2, X3 and X4 are uniformly distributed on the rows, columns, symbols of the
first square and symbols of the second square, respectively.

For this case, k ̸= 2, 6
k ̸= 2: trivial
k ̸= 6: Euler’s 36 officer problem
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Orthogonal array

0 1 2

1 2 0

2 0 1

0 1 2

2 0 1

1 2 0

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

is an OA(2, 4, 3) corresponding
to the MOLS.
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Variable-strength orthogonal array(VOA)

Definition 1 ([4],[5])

Given a loopless matroid M = (Nn, r) with r(Nn) ≥ 2, a kr(Nn) × n array T
with columns index by Nn,
entries from Nk ,

is called a variable-strength orthogonal array(VOA) induced by M with level k if for
any A ⊆ Nn, kr(Nn) × |A| subarry of T consisting of columns indexed by A satisfy the
following condition:

each row of this subarray occurs kr(Nn)−r(A) times.
We call such T a VOA(M, k).

4Qi Chen, Minquan Cheng, and Baoming Bai. “Matroidal entropy functions: a quartet of theories of information, matroid, design and coding”. In:
Entropy 23.3 (2021), pp. 1–11

5Q. Chen, M. Cheng, and B. Bai. “Matroidal Entropy Functions: Constructions, Characterizations and Representations”. In: IEEE Transactions
on Information Theory (2024), pp. 1–1. doi: 10.1109/TIT.2024.3355942
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Variable-strength orthogonal array(VOA)

Theorem 5 ([4],[5])
A random vector X = (Xi : i ∈ Nn) characterizes the matroidal entropy function
log k · M for a connected matroid M = (Nn, r) with rank r(Nn) ≥ 2 if and only if the
random variable X is uniformly distributed on the rows of a VOA(M, k).

4Qi Chen, Minquan Cheng, and Baoming Bai. “Matroidal entropy functions: a quartet of theories of information, matroid, design and coding”. In:
Entropy 23.3 (2021), pp. 1–11

5Q. Chen, M. Cheng, and B. Bai. “Matroidal Entropy Functions: Constructions, Characterizations and Representations”. In: IEEE Transactions
on Information Theory (2024), pp. 1–1. doi: 10.1109/TIT.2024.3355942
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Theorem 6

For F = (U2,4, U123
2,3 ), h = (a, b) ∈ F is entropic if and only if a + b = log k, a = H(α)

and (a, b) ̸= (log 2, 0), (log 6, 0), where integer k > 0 and α is a partition of k.

a

b

O log2 log3 log4log5log6

log2

log3

log4

log5

log6

Figure 4: The face (U2,4, U123
2,3 )
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H(XN4) = H(XN4−i), i ∈ N4

H(Xij) = H(Xi) + H(Xj), i < j , i , j ∈ N4,

H(Xi∪K ) + H(Xj∪K ) = H(XK ) + H(Xij∪K ),
|K | = 2,K ⊆ {1, 2, 3}, {i , j} = N4 \ K .

which imply that
Xi , i = 1, 2, 3 are uniformly distribued on Nk , and
the distribution of X4 can be any α

k , where α is a number partition of k.
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Semi-VOA(U2,4, k) induced by a partition p of Nk

h = (a, b) with a + b = log 3 and a = H(1
3 , 2

3)

VOA(U2,4, 3) T :

1 1 1 1
1 2 2 3
1 3 3 2
2 1 3 3
2 2 1 2
2 3 2 1
3 1 2 2
3 2 3 1
3 2 1 3

Tp :

1 1 1 1
1 2 2 2
1 3 3 2
2 1 3 2
2 2 1 2
2 3 2 1
3 1 2 2
3 2 3 1
3 2 1 2

where p = {{1}, {2, 3}}. Let (Xi , i ∈ N4) be uniformly distributed on the rows of Tp,
then

a = H(X4) = H(1
3 , 2

3),
a + b = H(X1) = H(X2) = H(X3) = log 3.
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Almost VOA(U2,4, k)

Definition 2
For k2 × 4 array T, it is called an almost VOA(U2,4, k) if both T(1, 2, 3) and T(1, 2, 4)
are VOA(U2,3, k).
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An almost-VOA(U2,4, 6)3

Tal :

1 1 1 1
1 2 2 6
1 3 3 4
1 4 4 5
1 5 5 3
1 6 6 2
2 1 2 2
2 2 3 1
2 3 6 5
2 4 5 4
2 5 1 6
2 6 4 3

3 1 3 3
3 2 4 5
3 3 1 2
3 4 2 6
3 5 6 4
3 6 5 1
4 1 4 4
4 2 6 3
4 3 5 6
4 4 3 2
4 5 2 1
4 6 1 5

5 1 5 5
5 2 1 4
5 3 2 3
5 4 6 1
5 5 4 2
5 6 3 6
6 1 6 6
6 2 5 2
6 3 4 1
6 4 1 3
6 5 3 5
6 6 2 4

3Leonhard Euler. “Recherches sur un nouvelle espéce de quarrés magiques”. In: Verhandelingen uitgegeven door het zeeuwsch Genootschap der
Wetenschappen te Vlissingen (1782), pp. 85–239.
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Semi-VOA(U2,4, 6)

Tal(1, 2, 3) and Tal(1, 2, 4) are both VOA(U2,3, 6).
T is not a VOA(U2,4, 6) since there are 34 different pairs in the rows of Tal({3, 4}),
where (2, 6) and (4, 5) each occurs twice.

Consider a partition p = {{1}, {2}, {3}, {4}, {5, 6}} of N6.
Let Tp be a 36 × 4 array such that Tp(N3) = Tal(N3) and each entry Tp(4) follows
the mapping from those Tal(4)

1 7→ 1
2 7→ 2
3 7→ 3
4 7→ 4

5, 6 7→ 5

for a partiton p′ coarser than p, we can obtain a Tp′ similarly
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Tp :

1 1 1 1
1 2 2 5
1 3 3 4
1 4 4 5
1 5 5 3
1 6 6 2
2 1 2 2
2 2 3 1
2 3 6 5
2 4 5 4
2 5 1 5
2 6 4 3

3 1 3 3
3 2 4 5
3 3 1 2
3 4 2 5
3 5 6 4
3 6 5 1
4 1 4 4
4 2 6 3
4 3 5 5
4 4 3 2
4 5 2 1
4 6 1 5

5 1 5 5
5 2 1 4
5 3 2 3
5 4 6 1
5 5 4 2
5 6 3 5
6 1 6 5
6 2 5 2
6 3 4 1
6 4 1 3
6 5 3 5
6 6 2 4

Let (Xi , i ∈ N4) be uniformly distributed on the rows of Tp and the entropy
function of (Xi , i ∈ N4) corresponds to the “red” polymatrioid in Fig.4.
Semi-VOA will shed light on open problems in combinatorial design theory.
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Tp :

1 1 1 1
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1 5 5 3
1 6 6 2
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2 3 6 5
2 4 5 4
2 5 1 5
2 6 4 3

3 1 3 3
3 2 4 5
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3 5 6 4
3 6 5 1
4 1 4 4
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4 3 5 5
4 4 3 2
4 5 2 1
4 6 1 5

5 1 5 5
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Let (Xi , i ∈ N4) be uniformly distributed on the rows of Tp and the entropy
function of (Xi , i ∈ N4) corresponds to the “red” polymatrioid in Fig.4.
Semi-VOA will shed light on open problems in combinatorial design theory.
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Theorem 7

For F = (U2,4, W34
2 ), h = (a, b) ∈ F is entropic if and only if a + b = log k for integer

k > 0, and there exists an almost VOA(U2,4, k) T, and

a = H(α) − log k,

where α = (αx3,x4 > 0 : x3, x4 ∈ Nk) and αx3,x4 denotes the times of the row (x3, x4)
that occurs in T(3, 4).
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Entropy functions on (U2,4, W34
2 )

a

b

O

(0.5,1)

(1,1)

(1.5,0.5)

log2 log3 log4

log2

log3

log4

Figure 5: The face (U2,4, W34
2 )

T1 :

1 1 1 1
1 2 2 2
2 1 2 2
2 2 1 1

T2 :

1 1 1 1
1 2 2 2
1 3 3 3
2 1 3 2
2 2 1 3
2 3 2 1
3 1 2 3
3 2 3 1
3 3 1 2

T3 :

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
2 1 2 2
2 2 3 3
2 3 1 1
2 4 4 4
3 1 4 3
3 2 1 4
3 3 2 1
3 4 3 2
4 1 3 4
4 2 4 1
4 3 1 2
4 4 2 3
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Uniform decomposition of a VOA(U2,3, k)

Definition 3
Given A, B ⊆ Nk and a VOA(U2,3, k) T, a |A||B| × 3 subarray T′ of T is called
induced by A and B if rows in T′(1, 2) are exactly those pairs in A × B.

Definition 4
Given A, B ⊆ Nk with |A||B| = k and a VOA(U2,3, k) T,

a subarray T′ of T induced by A and B is called a unit subarray of T if each
e ∈ Nk occurs exactly once in T′(3).
{Ti , i ∈ Nk} is called an uniform decomposition of a VOA(U2,3, k) T if

each Ti is a unit subarray of T and⊎
i∈Nk

Ai × Bi = N2
k .
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An example of uniform decomposition

T :

1 1 1
1 2 4
1 3 2
1 4 3
2 1 2
2 2 3
2 3 1
2 4 4
3 1 3
3 2 1
3 3 4
3 4 2
4 1 4
4 2 2
4 3 3
4 4 1

T1 :

1 1 1
1 2 4
1 3 2
1 4 3

T2 :

2 1 2
2 2 3
2 3 1
2 4 4

T3 :

3 1 3
3 2 1
4 1 4
4 2 2

T4 :

3 3 4
3 4 2
4 3 3
4 4 1

A1 = {1} A2 = {2} A3 = {3, 4} A4 = {3, 4}
B1 = N4 B2 = N4 B3 = N2 B4 = {3, 4}
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Theorem 8

For F = (W12
2 , W13

2 ), h = (a, b) ∈ F is entropic if and only if there exists a uniform
decomposition {T1, . . . , Tk} of a VOA(U2,3, k) T such that

a = log k − 1
k

k∑
i=1

log |Bi |, b = log k − 1
k

k∑
i=1

log |Ai |,

where the subarray Ti of T are induced by Ai and Bi for i ∈ Nk .
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Entropy functions on (W12
2 , W13

2 )

a

b

O

(0.5, 1.5)

(1, 1)

(1.5, 0.5)

log2 log3 log4

log2

log3

log4

Figure 6: The face (W12
2 , W13

2 )

T :

1 1 1
1 2 2
2 1 2
2 2 1

can be decomposed into

T1 : 1 1 1
2 1 2, T2 : 1 2 2

2 2 1 or

A1 = {1, 2} A2 = {1, 2}
B1 = {1} B2 = {2}

T1 : 1 1 1
1 2 2, T2 : 2 1 2

2 2 1.

A1 = {1} A2 = {2}
B1 = {1, 2} B2 = {1, 2}
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Definition 5
Given A, B ⊆ Nk with |A| = |B| = k1 ≤ k and a VOA(U2,3, k) T,

a subarray T′ of T induced by A and B is called a suborder VOA of T if T′ is a
VOA(U2,3, k1).
{Ti , i ∈ Nt} is called a suborder decomposition of a VOA(U2,3, k) T if

each Ti is a suborder VOA of T and⊎
i∈Nt

Ai × Bi = N2
k .
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An example of suborder decomposition

T :

1 1 1
1 2 4
1 3 2
1 4 3
2 1 2
2 2 3
2 3 1
2 4 4
3 1 3
3 2 1
3 3 4
3 4 2
4 1 4
4 2 2
4 3 3
4 4 1

T1 :

1 1 1
1 3 2
2 1 2
2 3 1

T2 :

1 2 4
1 4 3
2 2 3
2 4 4

T3 :

3 1 3
3 3 4
4 1 4
4 3 3

T4 : 3 2 1 T5 : 3 4 2 T6 : 4 2 2

T7 : 4 4 1
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Theorem 9

For F = (Û1
2,5, U234

2,3 ), h = (a, b) ∈ F is entropic if and only if a + b = log k for integer
k > 0, and there exists a suborder decomposition {T1, T2, . . . , Tt} of a VOA(U2,3, k)
T such that

a = 1
2H( |Ai |2

k2 : i ∈ Nt),

where the subarray Ti of T are induced by Ai and Bi for i ∈ Nt .
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Entropy functions on (Û1
2,5, U234

2,3 )

a

b

O log2 log3 log4

log2

log3

log4

(1,1)
(1.25,0.75)

(1.5,0.5)
(1.75,0.25)

Figure 7: The face (Û1
2,5, U234

2,3 )

The “red" polymatroid corresponds to the
suborder decomposition in the above
example.

a = 1
2H( 4

16 ,
4
16 ,

4
16 ,

1
16 ,

1
16 ,

1
16 ,

1
16)

= 1
2 [H( 4

16 ,
4
16 ,

4
16 ,

4
16) + 1

4 log 4]

= 5
8 log 4 = 1.25
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(U1
1,1, U2

1,1), (U12
1,2, U1

1,1), (U12
1,2, U3

1,1),
(U12

1,2, U13
1,2), (U12

1,2, U34
1,2), (U123

1,3 , U1
1,1),

(U123
1,3 , U4

1,1), (U123
1,3 , U12

1,2), (U123
1,3 , U14

1,2),
(U123

1,3 , U124
1,3 ), (U1,4, U1

1,1), (U1,4, U12
1,2),

(U1,4, U123
1,3 ).

{ar1 + br2 : a ≥ 0, b ≥ 0}

a

b

O

(U123
2,3 , U12

1,2),
(W34

2 , U12
1,2),

(W14
2 , U124

1,3 ).

{ar1 + br2 : a + b ≥ log k and
log(k − 1) ≤ a ≤ log k
for positive integer k}

a

b

O log2 log3 log4

log2

(U123
2,3 , U1

1,1), (U123
2,3 , U4

1,1), (U123
2,3 , U14

1,2),
(W14

2 , U1
1,1), (W34

2 , U1
1,1), (W14

2 , U14
1,2),

(W24
2 , U14

1,2).

{ar1 + br2 : a = log k for
some positive integer k, b ≥ 0}

a

b

O log2 log3 log4
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(Û1
2,5, U1

1,1),
(Û1

2,5, U2
1,1),

(Û1
2,5, U12

1,2)

{ar1 + br2 : a = log k for
some positive integer k, b ≥ 0}

a

b

O log2 log3 log4

(Û1
2,5, U123

1,3 ) {ar1 + br2 : a + b ≥ log k and log(k − 1) ≤ a ≤ log k
for positive integer k}

a

b

O log2 log3 log4

log2

(Û1
3,5, U1

1,1),
(Û1

3,5, U2
1,1),

(Û1
3,5, U12

1,2)

{ar1 + br2 : a + b ≥ log k and log(k − 1) ≤ a ≤ log k
for positive integer k}

a

b

O log2 log3 log4

log2
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(U123
2,3 , U124

1,3 ) {ar1 + br2 : a = log k for
some positive integer k, b ≥ 0}

a

b

O log2 log3 log4

(U123
2,3 , U124

2,3 ) {ar1 + br2 : a = log k1, b = log k2
for some positive integer k1, k2}

a

b

O log2 log3 log4

log2

log3

log4

(U123
2,3 , U1,4) {ar1 + br2 : a ≥ 0, b > 0 or (a, b) = (log k, 0)

for positive integer k}

a

b

O log2 log3 log4
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(W12
2 , U134

2,3 ) {ar1 + br2 : a + b = log k, a = H(α), where
integer k > 0 and α is a partition of k}

a

b

1

2
3

4

O log2 log3 log4

log2

log3

log4
1 : (0.92, 0.67)
2 : (0.81, 1.19)
3 : (1.00, 1.00)
4 : (1.50, 0.50)

(U2,4, U123
2,3 )

{ar1 + br2 : a + b = log k, a = H(α) and
(a, b) ̸= (log 2, 0), (log 6, 0),

where integer k > 0 and α is a partition of k}

a

b

O log2 log3 log4 log5 log6

log2

log3

log4

log5

log6

(Û1
2,5, W12

2 )
{ar1 + br2 : a + b = log k for some positive k and

a = 1
k

∑k
i=1 H(αi ),

where αi ∈ P(k), i = 1, 2, ..., k}

a

b

O

(0.50, 0.50)

log2 log3

log2

log3

1

2
3

4
5
6 7

8

1 : (0.31, 1.28)
2 : (0.53, 1.06)
3 : (0.61, 0.97)
4 : (0.83, 0.75)
5 : (0.92, 0.67)
6 : (1.06, 0.53)
7 : (1.14, 0.44)
8 : (1.36, 0.22)
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(U2,4, U123
1,3 )

{ar1 + br2 : a + b ≥ log k and log(k − 1) < a ≤ log k
for positive integer k ̸= 2, 6; or

a + b ≥ log (k + 1) and log(k − 1) < a ≤ log k
for k = 2, 6}

a

b

O log3 log4log5 log7

log3

(U2,4, U12
1,2)

{ar1 + br2 : a = log k for positive integer k ̸= 2, 6;
a = log 2, b ≥ log 2; or
a = log 6, b ≥ log 2}

a

b

O

(log 6, log 2)
(log 2, log 2)

log2

log2 log3 log4log5log6

(U2,4, W12
2 )

{ar1 + br2 : a + b = log k for integer k > 0, and
there exists a k2 × 4 array T such that

T(1, 3, 4) and T(2, 3, 4) are VOA(U2,3, k), and
a = H(α) − log k,

where α = (αx1,x2 > 0 : x1, x2 ∈ Nk) and
αx1,x2 denotes the times of the row (x1, x2) that

occurs in T(1, 2)}
a

b

O

(0.5,1)

(1,1)

(1.5,0.5)

log2 log3 log4

log2

log3

log4
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(U3,4, U1
1,1) {ar1 + br2 : a = log k for

some positive integer k, b ≥ 0}

a

b

O log2 log3 log4

(U3,4, U12
1,2) {ar1 + br2 : a = log k for

some positive integer k, b ≥ 0}

a

b

O log2 log3 log4

(U3,4, U123
2,3 ) {ar1 + br2 : a + b = log k for

some positive integer k}

a

b

O log2 log3 log4

log2

log3

log4
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(U3,4, U123
1,3 ) {ar1 + br2 : a = log k for

some positive integer k, b ≥ 0}

a

b

O log2 log3 log4

(U3,4, U1,4) {ar1 + br2 : a ≥ 0, b > 0 or (a, b) = (log k, 0)
for positive integer k}

a

b

O log2 log3 log4

(Û1
3,5, U234

1,3 ) {ar1 + br2 : a = log k for
some positive integer k, b ≥ 0}

a

b

O log2 log3 log4
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(Û1
3,5, U123

2,3 ) {ar1 + br2 : a = log k1, b = log k2 for
some positive integer k1, k2}

a

b

O log2 log3 log4

log2

log3

log4

(Û1
3,5, W23

2 ) {ar1 + br2 : a + b = log k for some integer k > 0}

a

b

O log2 log3 log4

log2

log3

log4

(U2,4, U1
1,1)

{ar1 + br2 : a = log k
for integer k ̸= 2, 6 or a = log 6, b ≥ log 2} ⊆ F ∗ and

{ar1 + br2 : a ̸= log k
for some integer k > 0 or a = log 2} ∩ F ∗ = ∅

a

b

O

(log 6, log 2)log2

log2 log3 log4log5log6
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(Û1
3,5, U2,4)

{ar1 + br2 : a + b = log k for integer k ̸= 2, 6;
(a, b) = (log 2, 0); or

a + b = log 6, a ≥ log 2}⊆ F ∗ and
{ar1 + br2 : a + b ̸= log k for some integer k > 0;

a + b = log 2, a < log 2; or
(a, b) = (0, log 6)} ∩F ∗ = ∅.

a

b

(log 2, log 3)

O log2 log3 log4log5log6

log2

log3

log4

log5

log6

(W12
2 , W13

2 )

{ar1 + br2 : there exists an entry-subarray decomposition
{T1, . . . , Tk} of a VOA(U2,3, k) T such that

a = log k − 1
k

∑k
i=1 log |Bi |,

b = log k − 1
k

∑k
i=1 log |Ai |,

where the subarray Ti of T are induced by
Ai and Bi for i ∈ Nk}

a

b

O

(0.5, 1.5)

(1, 1)

(1.5, 0.5)

log2 log3 log4

log2

log3

log4

(Û1
2,5, U234

2,3 )

{ar1 + br2 : a + b = log k for some positive k and
there exists a VOA decomposition {T1, T2, . . . , Tt}

of a VOA(U2,3, k) T such that

a = 1
2H( |Ai |2

k2 : i ∈ Nt),
where subarray Ti of T are induced by

Ai and Bi for i ∈ Nt}
a

b

O log2 log3 log4

log2

log3

log4

(1,1)
(1.25,0.75)

(1.5,0.5)
(1.75,0.25)
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Two-dimensional faces F Entropy region F ∗ = F ∩ Γ∗
4 Figures

(Û1
2,5, U2,4)

{ar1 + br2 : a + b = log k and there exists a VOA(U2,3, k) T′ and
its loose orthogonal array T1 such that

a = H(α1
k2 ,

α2
k2 , . . . ,

αt
k2 ) − log k,

where αi denotes the times of the row x1 that occurs in T1}

a

b

O log2 log3

log2

log3

1

3
2

4

6

8

5

7

9

10

1 : (0.30, 1.28)
2 : (0.39, 1.20)
3 : (0.53, 1.06)
4 : (0.61, 0.97)
5 : (0.70, 0.89)
6 : (0.83, 0.75)
7 : (0.92, 0.67)
8 : (1.06, 0.53)
9 : (1.14, 0.44)
10 : (1.36, 0.22)

(V 12
8 , U1

1,1), (V 12
8 , U3

1,1), (V 12
8 , U12

1,2)
(V 12

8 , U134
1,3 ), (V 12

8 , U1,4) {ar1 + br2 : a = 0, b ≥ 0}

a

b

O

(V 12
8 , U123

2,3 ), (V 12
8 , U3,4) {ar1 + br2 : a = 0, b = log k for some integer k > 0}

a

b

O

log2

log3

log4
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