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Entropies (Physical meanings)

Given random variables X and Y,
Entropy measures the amount of uncertainty in a random
variable:

H(X),−
∑

x

p(x) log p(x)

H(X,Y),−
∑
x,y

p(x, y) log p(x, y)

H(X) ≥ 0. Equality holds iff X is deterministic
H(X,Y)− H(Y) ≥ 0 (or simply H(X|Y) ≥ 0). Equality holds
iff X is a function of Y

H(X,Y) ≤ H(X) + H(Y). Equality holds iff X and Y are
independent
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Secure communications (single link)

ENCODER DECODER
M

K K

X M̂

Alice Bob

Secrecy: I(M; X) = 0

Encoding: H(X|M,K) = 0 (i.e., X is a function of M and K)
Decoding: H(M|K,X) = 0 (i.e., M is a function of X and K)

Applying information inequalities, one can prove that

H(K) ≥ H(M)
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Groups and Inequalities
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Brief introduction on groups

A group (G, ◦) consists of a set G and a binary group
operator ◦ such that

◦ is associative (i.e., (a ◦ b) ◦ c = a ◦ (b ◦ c))
Existence of identity element 1 such that 1 ◦ a = a ◦ 1 = a
Existence of inverse a−1 such that a−1 ◦ a = a ◦ a−1 = 1

Example: G is the set of nonzero real numbers and ◦ is
multiplication
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Constructing a random variable from a subgroup

U – random variable, uniform over finite group G.
S – subgroup of G

S induces a random variable X – the random left (or right)
coset of S in G containing U

G

S

aS

a′S

(By Lagrange’s Theorem) Pr(x) = |S|/|G|. Then
H(X) = log |G|/|S|.
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Example

Let G = {0, 1, 2, 3} and G1 = {0, 2}. The group operation is
the mod 4 addition.
G1 partitions G into two cosets {0, 2} and {1, 3}.
Each coset of size the same as G1.
Let U be a random variable which takes values “uniformly”
over G.
G1 induces a random variable X1 such that X1 takes two
“values”

X1 =

{
{0, 2} if U = 0 or 2
{1, 3} if U = 1 or 3.

H(X1) = log 4/2
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Another example - Two variables

Example: Two group induced random variables

|S ∩ S�|
H(X1,X2) = log |G|/|G1 ∩ G2|.
Quasi-uniform (i.e., uniform over its supports)



9

Implication: Group-theoretic inequalities

Theorem (Chan, Yeung 2002)

Let
∑

α⊆N cαH(Xα) ≥ 0 be a valid information inequality. Then
for any finite group G and its subgroups {Gi, i ∈ N},∑

α⊆N
cα log

|G|
| ∩i∈α Gi|

≥ 0,

or equivalently, |G|
∑

α⊆N cα ≥∏α⊆N |∩i∈αGi|cα .

Proof: Let Xi be constructed from subgroup Gi.

Converse also holds !!
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Non-Shannon inequality

The non-Shannon inequality

H(X1) + H(X2) + 2H(X1,X2) + 4H(X3) + 4H(X4)

+5H(X1,X3,X4) + 5H(X2,X3,X4)

≤ 6H(X3,X4) + 4H(X1,X3) + 4H(X1,X4)

+4H(X2,X3) + 4H(X2,X4),

implies

|G34|6|G13|4|G14|4|G23|4|G24|4

≤ |G1||G2||G3|4|G4|4|G12|2|G134|5|G234|5.
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Group theoretic proof

Prove: I(X1; X2) ≥ 0

Step 1: Transform into group theoretic inequality:

I(X1; X2) ≥ 0

⇔ H(X1) + H(X2)− H(X1,X2) ≥ 0

⇔ log |G|/|G1|+ log |G|/|G2| − log |G|/|G1 ∩ G2| ≥ 0

⇔ |G||G1 ∩ G2| ≥ |G1|G2|
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Group theoretic proof

Step 2: Proving the group inequality:

Let G1 ◦ G2 = {a ◦ b : a ∈ G1, b ∈ G2}.
|G1 ◦ G2| ≤ |G|
|G1 ◦ G2| ≤ |G1||G2|
|G1 ∩ G2| < |G1||G2| if
there are duplications:

a ◦ b = (a ◦ k) ◦ (k−1 ◦ b)

where k ∈ G1 ∩ G2

Hence,

|G1◦G2| = |G1||G2|/|G1∩G2|

As a result,
|G| ≥ |G1||G2|/|G1 ∩ G2|

G1

G2

a�

a

b b�
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Codes and Random
Variables
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What are codes?

(Error control) coding is a technique to protect transmitted
data against errors

Noisy ChannelAlice

Z=(0,0,0)

Bob
Encoder Decoder

(1,0,0) Z=(0,0,0) ?

0  --  (0,0,0)
1  --  (1,1,1)

Codebook size vs. Error correcting capability

Error probability = Pr(more than one symbol error)

Code – a set of random variables (Z1, . . . ,Zn)

Zi – the ith codeword symbol.
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From codes to random variables

Let C ⊆∏n
i=1Zi be a code. It induces n random variables

(Z1, . . . ,Zn) such that

Pr(z1, . . . , zn) =

{
1/|C| if (z1, . . . , zn) ∈ C
0 otherwise.

Z1, . . . ,Zn are called the codeword symbol random
variables induced by the code C.
Use language involved random variables
Can consider a larger class of codes (where the underlying
distribution is arbitrarily)
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Tamper-proof transmission

Transmitter and receiver connected via n parallel links
Adversary – obstruct data transmission

Replacing the messages transmitted on the attacked links
with any other messages.
Message transmitted on untampered link received without
error.

The same concept as in classical error correcting codes

Source Sink
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Tamper-proof transmission

Find the highest rate code that resilient to attacks:

Adversary’s tampering pattern Λ – the possible link
subsets that an adversary can attack.
If the adversary can attack up to any t links, then Λ
contains all subsets of sizes up to t.
Codebook size - H(Z1, . . . ,Zn)
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Tamper-proof transmission

Code is resilient if H(Z1, . . . ,Zn|Zi, i ∈ αc) = 0 for all α ⊆ Λ2

where Λ2 , {B ∪ C : B, C ∈ Λ}.

X

X

⇤

⇤⇤2

X
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Distributed Storage

Data encoded into n pieces Z1, . . . ,Zn,
each stored in a data centre (DC)
In case of data centre failures, the stored data can be
restored from other DC
Ξ – failure pattern,
Design a storage code such that data can be restored if a
set A ∈ Ξ of data centres fail.
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Distributed Storage

Find the most efficient storage code (resilient to failures)
Code size – H(Z1, . . . ,Zn)

Robustness if

H(Z1, . . . ,Zn|Zj, j ∈ αc) = 0

for all α ∈ Ξ

Extension to subset recovery
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Network Coding

Network code - specified
by a set of random
variables
Source variables
Link variables
Topological constraint:

H(Y7|Y4,Y5) = 0

Decoding constraint:

H(Y1|Y6,Y9) = 0

Y1

Y2 Y3

Y4 Y5

Y6 Y7 Y8

Y9

Ŷ1

Y10

Ŷ1



23

Secret Sharing

Dealer share a secret with n− 1 participants, indexed by
the set {2, . . . , n}. (Dealer is player 1)
only specified legitimate groups of participants can
reconstruct the secret data
Ω – access structure, only participants indexed by A ∈ Ω
can access the secret.
A secret sharing scheme is a random vector (Z1, . . . ,Zn)
such that

1 Z1 is the secret;
2 Zj is the share held by participant j;
3 H(Z1|Zj, j ∈ A) = 0 if A ∈ Ω;
4 Z1 and (Zj : j ∈ A) are independent whenever A 6∈ Ω.



24

Fundamental questions ...

These are codes

specified by random variables
satisfied functional dependency constraint

The basic questions are ...

How to find an efficient code?
Bounds on the rate of codes?
Necessary condition for the existence of a code?
In particular, assume a finite regime – alphabet sizes are
fixed
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Characterising Codes and Random Variables

Codes are random variables
Hence, information inequalities also govern codes
Examples - Linear Programming Bound in Network Coding
and Secret Sharing
“Asymptotic” in nature – Singleton Bound is tight for
sufficiently large alphabet
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Finite Codes

Let Z1, . . . ,Zn be a set of non-empty sets, of sizes
N1, . . . ,Nn

Assume WLOG Zi = {0, . . . ,Ni − 1}
A code C is a non-empty subset of

∏n
i=1Zi (or simply ZN ).

For any codewords, a = (a1, . . . , an),b = (b1, . . . , bn) ∈ ZN ,
their

difference – (a− b) , (a1 − b1, . . . , an − bn)
support – S(a,b) , {j ∈ {1, . . . , n} : aj − bj 6= 0} .
distance – |S(a,b)|

The minimum distance of a code C is defined as

min
a,b∈C:a 6=b

|S(a,b)|.
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Example

Suppose C = {(0, 1, 1), (0, 2, 1), (1, 2, 1)} where
Ni = {0, 1, 2}
Consider the pair of codewords (0, 1, 1) and (0, 2, 1)

Difference is (0, 2, 0)
Support is the subset {1} and the distance is 1.

Consider the pair of codewords (0, 1, 1) and (1, 2, 1)

Difference is (2, 2, 0)
Support is the subset {1, 2} and the distance is 2.

Denote the support be a binary vector of length n

E.g., (0, 1, 0) and (1, 1, 0) (i.e., a subset is a binary vector)
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Enumerators

Given a code C,
Difference enumerator (FE)

Diff (a) = | {(b, c) : b, c ∈ C and b− c = a} |.

Support enumerator (SE)

Supp(r) = | {(b, c) : b, c ∈ C and S(b, c) = r} |
=

∑
a:ai 6=0 iff i∈r

Diff (a).

Distance enumerator (DE)

Dist(i) = | {(b, c) : b, c ∈ C and |S(b, c)| = i} |
=
∑

r:|r|=i

Supp(r).

Sometimes, normalised with the factor 1/|C|2
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Necessary condition

Think of Supp(r) as a vector of size 2n:

Theorem (Necessary condition)

Support enumerator will satisfy the following conditions:

Supp(r) ≥ 0∑
r

Supp(r)

n∏
j=1

κNj(rj, sj) ≥ 0

where r = (r1, . . . , rn), s = (s1, . . . , sn) ⊆ N , and

κNj(rj, sj) =


1 if rj = 0
Nj − 1 if sj = 0 and rj = 1
−1 otherwise,
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Proof

For each code C, it is associated with an “indicator
function” J defined as follows

J(z1, . . . , zn) =

{
1 if (z1, . . . , zn) ∈ C
0 otherwise.

The indication function is a “scaled” probability distribution
Then Supp(a) =

∑
b J(b)J(b + a).

Theorem (Nonnegativity)

Diff (a) =
∑

b J(b)J(b + a) ≥ 0.
D̂iff (k1, . . . , kn) ,

∑
a1,...,an

Diff (a1, . . . , an)
∏n

j=1 e−2πajkj/Nj ≥ 0
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Proof

Let

δNj(aj, rj) =


1 if aj = rj = 0
1 if aj, rj 6= 0
0 otherwise.

Supp(r) =
∑

a1,...,an

Diff (a1, . . . , an)

n∏
j=1

δNj(aj, rj)

Let

κNj(rj, sj) =


1 if rj = 0
Nj − 1 if sj = 0 and rj = 1
−1 otherwise,

Then∑
k1,...,kn

n∏
j=1

e−2πajkj/NjδNj(kj, sj) =
∑

r1,...,rn

n∏
j=1

δNj(aj, rj)κNj(rj, sj)
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Proof ∑
a1,...,an

Diff (a1, . . . , an)
∏n

j=1 e−2πajkj/Nj ≥ 0
Notice that∑

k1,...,kn

 ∑
a1,...,an

Diff (a1, . . . , an)

n∏
j=1

e−2πajkj/Nj

 δNj(kj, sj) ≥ 0

∑
a1,...,an

Diff (a1, . . . , an)

 ∑
k1,...,kn

n∏
j=1

e−2πajkj/NjδNj(kj, sj)

 ≥ 0

∑
a1,...,an

Diff (a1, . . . , an)

 ∑
r1,...,rn

n∏
j=1

δNj(aj, rj)κNj(rj, sj)

 ≥ 0

∑
r1,...,rn

 ∑
a1,...,an

Diff (a1, . . . , an)

n∏
j=1

δNj(aj, rj)

κNj(rj, sj) ≥ 0

∑
r1,...,rn

Supp(r)

n∏
j=1

κNj(rj, sj) ≥ 0
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Delsarte’s LP bound

Theorem (Delsarte’s LP bound)

Let C be a code such that the minimum Hamming distance of C
is at least d. Then |C|2 is upper bounded by the maximum of the
following optimisation problem:

maximize
∑

r Supp(r)
subject to Supp(r) ≥ 0 ∀r∑

s
Supp(s)

n∏
j=1

κNj(sj, rj) ≥ 0 ∀r

|Supp(r)| = 0 ∀r : 1 ≤ |r| ≤ d − 1 .
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Renyi entropy and codes
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Renyi entropy

Definition

Let Z be a random variable with probability distribution f (z).
Then its Renyi entropy of order α for α ≥ 0 and α 6= 1 is defined
as

Hα(Z) ,
1

1− α log

 ∑
z:f (z)>0

f (z)α

 .

When α = 1, H1(Z) , limα→1 Hα(Z).

Examples

H2(Z) = − log

(∑
z

f (z)2

)
H1(Z) = −

∑
z

f (z) log f (z)

H0(Z) = log |{z : f (z) > 0}| .
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Renyi Entropy - Interpretation

Let X and Y be two independent random variables,
identically distributed as Z.
Then H2(Z) = − log Pr(X = Y).
Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two
independent sets of random variables with the same
probability distribution f . Then for any s ⊆ N ,

ψf (s),Pr(S(X,Y) ⊆ s) = 2−H2(Xs̄).
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Extension

Let f be a probability mass function for random variables
(Z1, . . . ,Zn).
Let

F(a) =
∑

b

f (b)f (b + a)

φ(r) =
∑

a
F(a)

n∏
j=1

δNj(aj, rj)

(Compare: Supp(r) =
∑

a F(a)
∏n

j=1 δNj(aj, rj) when f = J)
Let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) be two
independent sets of random variables with the same
probability distribution f .
Then for any r ⊆ N ,

φ(r) = Pr(S(X,Y) = r).
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Extension

Theorem (Support Enumerator)

φf (r) ≥ 0∑
r
φf (r)

n∏
j=1

κNj(rj, sj) ≥ 0

for all r = (r1, . . . , rn), s = (s1, . . . , sn) ⊆ N .

For f induced by a code C, then

φf (r) =
1
|C|2 Supp(r).
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Mobius Transform

Recall

ψf (s) = Pr(S(X,Y) ⊆ s) = 2−H2(Xs̄)

φf (s) = Pr(S(X,Y) = s)

Theorem (Relation to Renyi entropy)

∑
r:r⊆s

φf (r) = ψf (s),

∑
s:s⊆v

(−1)|v\s|ψf (s) = φf (v)

for all r, s, v ⊆ N
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Renyi information inequalities

Theorem

Let f be a probability distribution of a set of discrete random
variables (Z1, . . . ,Zn). Then for all r ⊆ N ,

φf (r) =
∑
s:s⊆r

(−1)|r\s|2−H2(Zs̄) ≥ 0,

∑
r
φf (r)

n∏
j=1

κNj(rj, sj) =
∑

u:u⊆r

(−1)|u|2−H2(Zū∩r)
∏

j:j∈r\u

2H0(Zj) ≥ 0.
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Corollary

Theorem

Let {Z1, . . . ,Zn} be a set of marginally uniform random
variables. Then for all r ⊆ N ,∑

s:s⊆r

(−1)|r\s|2−H2(Zs̄) ≥ 0,

∑
u:u⊆r

(−1)|u|2−H2(Zr\u)+
∑

j:j∈r\u H2(Zj) ≥ 0.
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Dualities

Theorem (Dualities)

Let f be a probability distribution of a set of marginally
uniform discrete random variables (Z1, . . . ,Zn).
Let ρ(r) , H2(Zj, j ∈ r) be the collision (or extension)
entropy function
Let µ(r) ,

∑
i∈r ρ(i) + ρ(r̄)− ρ(N ) be its induced dual.

Then for all r ⊆ N ,∑
s:s⊆r

(−1)|r\s|2ρ(N )−ρ(s) ≥ 0

∑
s:s⊆r

(−1)|r\s|2µ(N )−µ(s) ≥ 0
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Group induced random variables

Theorem

Let G be a finite group and G1, . . . ,Gn be its subgroups. There
exists random variables U1, . . . ,Un such that

H0(Ui, i ∈ α) = H2(Ui, i ∈ α) = log |G| − log | ∩i∈α Gi|.

Corollary ∑
s:s⊇r̄

(−1)|s−r|| ∩i∈s Gi| ≥ 0

∑
s:s⊆r

(−1
|G|

)|s| | ∩i∈r\s Gi|∏
j:j∈r\s |Gj|

≥ 0

for all r ⊆ N .



44

Conclusion

Codes Random 
Variables

Support
Enumerator

Renyi
Entropy LP bound

Entropy
Ineq

Fourier Transform
induced

induced
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What about applications?
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Coding constraint

Suppose C ⊆ ZN is a code. Let

Shorten(s) =
∑
r:r⊆s

Supp(r)

Shorten(s) – number of codeword pairs such that the two
codewords agree at “positions” not in s.
Compare ψf (s) =

∑
r:r⊆s φf (r)

φf (s)⇔ 1
|C|2 Supp(s)

2−H2(Zs̄) = ψf (s)⇔ 1
|C|2 Shorten(s)

If ZB is a function of ZA, then

Shorten(N − (A ∪ B)) = Shorten(N −A)

If ZA and ZB are independent, then

Shorten(N−(A∪B))Shorten(N ) = Shorten(N−A)Shorten(N−B)
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Delsarte’s LP bound

Theorem (Delsarte’s LP bound)

Let C be a code such that the minimum Hamming distance of C
is at least d. Then |C|2 is upper bounded by the maximum of the
following optimisation problem:

maximize
∑

r Supp(r)
subject to Supp(r) ≥ 0 ∀r∑

s
Supp(s)

n∏
j=1

κNj(sj, rj) ≥ 0 ∀r

|Supp(r)| = 0 ∀r : 1 ≤ |r| ≤ d − 1 .
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Bounds - Tamper proof communications

|C|2 is upper-bounded by the optimum of the following linear
programming problem:

maximize
∑

r Supp(r)
subject to Supp(r) ≥ 0 ∀r∑

s
Supp(s)

n∏
j=1

κNj(sj, rj) ≥ 0 ∀r

Shorten(r) =
∑
s⊆r

Supp(s) ∀r

Shorten(A) = 1 ∀A ∈ Λ2 .
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Bounds - Secret Sharing

The optimum efficiency is upper-bounded by the optimum of
the following optimisation:

maximize min
j∈N−{1}

log Shorten(N )− log Shorten(N − {1})
log Shorten(N )− log Shorten(N − {j})

subject to Supp(r) ≥ 0∑
s

Supp(s)
n∏

j=1

κNj(sj, rj) ≥ 0

Shorten(r) =
∑
s⊆r

Supp(s)

Shorten(N − (A ∪ {1})) = Shorten(N −A), ∀A ∈ Ω
Shorten(N − (A ∪ {1}))Shorten(N )

= Shorten(N −A)Shorten(N − {1}), ∀A 6∈ Ω
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Thank You !!
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