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Entropies (Physical meanings)

Given random variables X and Y,

m Entropy measures the amount of uncertainty in a random
variable:

IID

Zp x) log p(x)

H(X,Y)% - Zp x,) logp(x, y)
X,y
m H(X) > 0. Equality holds iff X is deterministic
m H(X,Y)—H(Y) >0 (or simply H(X|Y) > 0). Equality holds
iff X is a function of Y

m H(X,Y) <H(X)+ H(Y). Equality holds iff X and Y are
independent



Secure communications (single link)

Alice Bob

O ]

M X M
o)
D T

m Secrecy: I(M;X) =0
m Encoding: H(X|M,K) = 0 (i.e., X is a function of M and K)
m Decoding: H(M|K,X) = 0 (i.e., M is a function of X and K)

Applying information inequalities, one can prove that

H(K) > H(M)



Groups and Inequalities



Brief introduction on groups

m A group (G, o) consists of a set G and a binary group
operator o such that
B ois associative (i.e., (aob)oc=ao (boc))
m Existence of identity element 1 suchthatlca=aol=a
m Existence of inversea=! suchthata='oca =aoa™!' =1
m Example: G is the set of nonzero real numbers and o is
multiplication



Constructing a random variable from a subgroup

m U —random variable, uniform over finite group G.

m S —subgroup of G

m S induces a random variable X — the random left (or right)
coset of S in G containing U

<\

m (By Lagrange’s Theorem) Pr(x) = |S|/|G|. Then
H(X) = log|G|/|S|.



m Let G={0,1,2,3} and G| = {0,2}. The group operation is
the mod 4 addition.

m G, partitions G into two cosets {0,2} and {1, 3}.

m Each coset of size the same as G;.

m Let U be a random variable which takes values “uniformly”
over G.

m G; induces a random variable X; such that X; takes two
“values”

1=

{0,2} ifu=0o0r2
{1,3} ifUu=1or3.

B H(X;) =log4/2



Another example - Two variables

m Example: Two group induced random variables

S aS a'S
S'|e|*®
aS’ L °
®l e
CL/S/ () ?
|SmS’|/

[ | H(Xl,Xz) = log |G|/|G1 N G2|.
m Quasi-uniform (i.e., uniform over its supports)



Implication: Group-theoretic inequalities

Theorem (Chan, Yeung 2002)

Lety" \ caH(Xo) > 0 be a valid information inequality. Then
for any finite group G and its subgroups {G;,i € N'},

Z cq log i >0,
| ﬁi€o¢ Gl| a
aCN

or equivalently, |G|2=acn ¢ > [Tacn INicaGil*-

Proof: Let X; be constructed from subgroup G;.



Implication: Group-theoretic inequalities

Theorem (Chan, Yeung 2002)

Lety" \ caH(Xo) > 0 be a valid information inequality. Then
for any finite group G and its subgroups {G;,i € N'},

Z cq log i >0,
| ﬁi€o¢ Gl| a
aCN

or equivalently, |G|2=acn ¢ > [Tacn INicaGil*-
Proof: Let X; be constructed from subgroup G;.

Converse also holds !!



Non-Shannon inequality

The non-Shannon inequality

H(X)) + H(X2) +2H (X1, Xo) + 4H(X3) + 4H(X4)
+5H(X1,X3,X4) + 5H(X>, X3, Xy)
< 6H(X3,X4) +4H (X1, X3) + 4H (X1, Xy)
+4H (X, X3) + 4H(X>, Xy),

implies

G34(°|G13]*|G1al*| Gos|*|Goa|*
< |G1]|G2]|G3]*|G4|*|G12|*| G134 | Gosal.



Group theoretic proof

Prove: I(X1;X2) > 0

m Step 1: Transform into group theoretic inequality:

I(X1;X2) >0

< H(Xi) + H(X2) — H(X1,X2) > 0

< log|G|/|Gi| +1og |G|/|Gz| — log|G[/|G1 NG| = 0
< |G[|G1 N G| = |G1|Ga|



Group theoretic proof

Step 2: Proving the group inequality:
Let Gio Gy ={aob:ac Gi,be Gy}
B |G 0G| < |G|
B |G| o G| < |Gy]|G]

[ | ‘G] OGQ‘ < ’G]HGz‘ if b Go
there are duplications: Je|e
—1 - '
aob=(aok)o(k ob) o le
where k € G; N G, a

m Hence,

|G10Gs| = |G1]|G2|/|G1NG,|

m As a result,
|G| > |G1]|G2|/|G1 N G|



Codes and Random
Variables



What are codes?

m (Error control) coding is a technique to protect transmitted
data against errors

0 - (0,00
I - (L)
Alice Noisy Channel [ Bob
ﬂ Y »| Decoder ——»
Z=(0,0,0) (1,0,0) Z=(0,0,0) ?

m Codebook size vs. Error correcting capability

Error probability = Pr(more than one symbol error)

m Code — a set of random variables (7, ...,Z,)
m Z; —the i codeword symbol.



From codes to random variables

m LetC C [\, Zi be a code. It induces n random variables
(Zy,...,Z,) such that

1/IC|  if(z1,...,zx) €C
Pr(zi,...,2,) = .
ra ) {0 otherwise.

m Z,,...,Z, are called the codeword symbol random
variables induced by the code C.

m Use language involved random variables

m Can consider a larger class of codes (where the underlying
distribution is arbitrarily)



Tamper-proof transmission

m Transmitter and receiver connected via n parallel links
m Adversary — obstruct data transmission

m Replacing the messages transmitted on the attacked links
with any other messages.

m Message transmitted on untampered link received without
error.

m The same concept as in classical error correcting codes

Source Sink



Tamper-proof transmission

Find the highest rate code that resilient to attacks:
m Adversary’s tampering pattern A —the possible link
subsets that an adversary can attack.

m If the adversary can attack up to any ¢ links, then A
contains all subsets of sizes up to .

m Codebook size - H(Zy,...,Z,)



Tamper-proof transmission

Code is resilient if H(Zy,...,Z,|Z;,i € o) = 0 for all o C A?
where A2 = {BUC : B,C € A}.




Distributed Storage

m Data encoded into n pieces 7y, ..., Z,,
m each stored in a data centre (DC)

m In case of data centre failures, the stored data can be
restored from other DC

m = — failure pattern,

m Design a storage code such that data can be restored if a
set A € = of data centres fail.



Distributed Storage

Find the most efficient storage code (resilient to failures)
m Code size -H(Z,,...,Z,)
m Robustness if

H(Zy,...,Z)|Z;,j€a’) =0

foralla e =
m Extension to subset recovery



Network Coding

m Network code - specified
by a set of random
variables

m Source variables
m Link variables
m Topological constraint:

H(Y7|Y4,Y5) =0
m Decoding constraint:

H(Y\|Ys,Y9) =0

Yy



Secret Sharing

m Dealer share a secret with n — 1 participants, indexed by
the set {2,...,n}. (Dealer is player 1)

m only specified legitimate groups of participants can
reconstruct the secret data

m () — access structure, only participants indexed by A € Q
can access the secret.
m A secret sharing scheme is a random vector (Zy, ..., Z,)
such that
Kl Z is the secret;
H Z is the share held by participant j;
B H(Z|Z,je A =0ifAcQ;
A Z and (Z : j € A) are independent whenever A ¢ ().



Fundamental questions ...

These are codes

m specified by random variables
m satisfied functional dependency constraint

The basic questions are ...

m How to find an efficient code?
m Bounds on the rate of codes?
m Necessary condition for the existence of a code?

m In particular, assume a finite regime — alphabet sizes are
fixed



Characterising Codes and Random Variables

m Codes are random variables

m Hence, information inequalities also govern codes

m Examples - Linear Programming Bound in Network Coding
and Secret Sharing

m “Asymptotic” in nature — Singleton Bound is tight for
sufficiently large alphabet



Finite Codes

m Let Z,..., Z, be a set of non-empty sets, of sizes
Ni,...,Ny
m Assume WLOG Z;, = {0,...,N; — 1}
m A code C is a non-empty subset of [[\_, Z; (or simply ZN).
m For any codewords, a = (ay,...,a,),b = (by,...,b,) € ZV,
their
m difference — (a—b) £ (a; — by, ...,a, — b,)
m support— S(a,b) = {j € {1,...,n}: a;— b; £ 0}.
m distance — |S(a,b)]

m The minimum distance of a code C is defined as

min _|S(a,b)|.
a,beC:a#b



m Suppose C = {(0,1,1),(0,2,1),(1,2,1)} where
Ni = {07 17 2}
m Consider the pair of codewords (0,1, 1) and (0,2, 1)
m Difference is (0,2,0)
m Support is the subset {1} and the distance is 1.
m Consider the pair of codewords (0, 1,1) and (1,2, 1)
m Difference is (2,2,0)
m Support is the subset {1,2} and the distance is 2.
m Denote the support be a binary vector of length n
m E.g., (0,1,0) and (1,1,0) (i.e., a subset is a binary vector)



Given a code C,
m Difference enumerator (FE)

Diff(a) = | {(b,¢): b,ceCandb—c=a}]|.
m Support enumerator (SE)

Supp(r) = | {(b,¢) : b,c € Cand S(b,c) =r}|

= Y Dif(a).

a:a; 40 iff icr
m Distance enumerator (DE)
Dist(i) = | {(b,¢) : b,c € C and |S(b,¢c)| =i} |
= Z Supp(r).

r:|r|=i

m Sometimes, normalised with the factor 1/|C|?



Necessary condition

Think of Supp(r) as a vector of size 2":

Theorem (Necessary condition)

Support enumerator will satisfy the following conditions:

Supp(r) >0
ZSupp HFJN (rj,8)

wherer = (ry,...,ry),s = (s1,...,5:,) C N, and

1 ifl"j =0
kN (rj,87) =< N;j—1 ifsj=0andr =1
—1 otherwise,



m For each code C, it is associated with an “indicator
function” J defined as follows

J(Z Z)— 1 if(zl,...,zn)GC
Pt T otherwise.

m The indication function is a “scaled” probability distribution
m Then Supp(a) = >, J(b)J(b +a).

Theorem (Nonnegativity)

® Diff (ki, ...,k ézal 77777 anDiﬁ”(al,...,an)H]" e 2maki/N > ()




m Let
1 If aj = rj =0
51\/].(aj,rj) == 1 if aj,rj 75 0
0 otherwise.
| ]
Supp(r) = Z Diff (ay,...,a H(SN aj, r;)
ay,...,dn
m Let
1 If I"j = 0
kn,(rj,85) =4 N;j—1 ifsj=0andr =1
-1 otherwise,
Then

Z H —27ra,k,/N/5 Z H‘SN aj, 1) o (rj, 57)

kiy.eoskn j=1 Ilyeesstn j=1



u Zal, dn iff(ai,...,an) Hj'.':] e 2maki/N; > ()
m Notice that

n
S DL pifar, . an) [T e 2N ) by, (ks s1) > 0
k17~--7kn ay,---ydn ]:1
n
Z Diff (ay, ..., ay) Z Hefz’mfkf/NfO}Vj(kj,sj) >0
ay,...,dn k|,...,knj:1
n
Z Diff (ay, ..., a,) Z H(S]vj(aj,rj)/ﬁ;]vj(rj,sj) >0
ay,...,dp Flyeenstn j=1

n
Z Z Dijjf(al,...,an)HéNj(aj,rj) m\/j(rj,sj) > 0
Flyeeestn \Q15---50n j=1
Z Supp(r H KN, (15, )

Flyeeesln



Delsarte’s LP bound

Theorem (Delsarte’s LP bound)

Let C be a code such that the minimum Hamming distance of C

is at least d. Then |C|* is upper bounded by the maximum of the
following optimisation problem:

maximize ) Supp(r)
subject to Supp(r) >0 Vr

> Supp(s) [ [ on(s5, ) =0 vr
s j=1

|Supp(r)| =0 Vr: 1<|r|<d-—1.



Renyi entropy and codes



Renyi entropy

Definition

Let Z be a random variable with probability distribution f(z).
Then its Renyi entropy of order o for a > 0 and « # 1 is defined

as
log Z f2)
z:f(2)>0

When a = 1, H(Z) £ lim,_,1 H,(Z).

Ho(Z) =

Examples
= —log (Zf(Z)2>
—Y f(2)logf(2)

Ho(Z) = log[{z: f(z) > O}



Renyi Entropy - Interpretation

m Let X and Y be two independent random variables,
identically distributed as Z.

m Then Hy(Z) = —logPr(X =7Y).

mletX=(X},....X,)and Y = (Yy,...,Y,) be two
independent sets of random variables with the same
probability distribution f. Then for any s C

Ur(s)2 Pr(S(X,Y) C's) = 2709,



m Let f be a probability mass function for random variables
(Zh s ,Zn)'
m Let

Zf f (b + a)
= Fla) H on; (aj, 1)
a j=1

(Compare: Supp(r) =3, F(a) [T, on;(aj, ;) when f = J)
mletX=(X;,....,X,)and Y = (Yy,...,Y,) be two
independent sets of random variables with the same
probability distribution f.
m Then foranyr C NV,



Theorem (Support Enumerator)

¢r(r) >0

Z¢f HmN] (75, 57)

forallr = (ri,...,rn),s = (s1,...,5,) CN.

For f induced by a code C, then

¢r(r) = |Cl|25upp( )-



Mobius Transform

Recall

Theorem (Relation to Renyi entropy)

> dr(r) = yy(s),

r:rCs

> (=DMlyy(s) = r(v)

s:sCv

forallr,s,v C N



Renyi information inequalities

Letf be a probability distribution of a set of discrete random
variables (Z1,...,Z,). Then forallr C N,

() = 3 (-1 5

s:sCr

Z¢f HHN, rijJ Z (_1)|u|2*H2(Zﬁﬁr) H 2Ho(Z) > 0.

e Jji€r\u




Corollary

Let{z,,...,Z,} be a set of marginally uniform random
variables. Then for allr C N/,

Z (—1)Ir\slp=F2(Z) > ¢

s:sCr
Z (_1)|u|2_H2(Zl‘\ll)+Ej:jer\u m(Z) > ¢,

wuCr




Theorem (Dualities)

m Letf be a probability distribution of a set of marginally
uniform discrete random variables (Z,, ... ,Z,).

m Let p(r) £ Hy(Z;,j € r) be the collision (or extension)
entropy function

m Letp(r) £ Y., p(i) + p(F) — p(N) be its induced dual.
m Thenforallr C N,
S (= 1)lsir)=r6 >

s:sCr

3 (—1)PssM-46) > o

s:sCr




Group induced random variables

Let G be a finite group and G4, . . . , G, be its subgroups. There
exists random variables Uy, . . ., U, such that

H()(U,',i e a) = Hz(U,',i € Oé) = log ’G| — 10g| Meze G,‘|.

Corollary

> (DN Gi > 0

$:sOT

1\ Bl N, G;
Z (_1> ’ ier\s ‘ >0
Gl Tljjers Gl

s:sCr

forallr C N.
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What about applications?



Coding constraint

Suppose C C 2V is a code. Let

Shorten(s Z Supp(r

rrCs

m Shorten(s) — number of codeword pairs such that the two
codewords agree at “positions” not in s.

u Compare ¢f(s) = Zr:rgs (;Sf(l')
1
or(s) < ‘Cleupp( s)
2 HT8) = 4y (s) & ‘Cllehorten(s)
m If Zg is a function of Z 4, then
Shorten(N — (AU B)) = Shorten(N — A)

m If Z4 and Z3 are independent, then
Shorten(N —(AUB))Shorten(N') = Shorten(N —A)Shorten(N —B)



Delsarte’s LP bound

Theorem (Delsarte’s LP bound)

Let C be a code such that the minimum Hamming distance of C

is at least d. Then |C|* is upper bounded by the maximum of the
following optimisation problem:

maximize ) Supp(r)
subject to Supp(r) >0 Vr

> Supp(s) [ [ on(s5, ) =0 vr
s j=1

|Supp(r)| =0 Vr: 1<|r|<d-—1.



Bounds - Tamper proof communications

|C|? is upper-bounded by the optimum of the following linear
programming problem:

maximize ) Supp(r)

subjectto Supp(r) >0 Vr
Z Supp(s H KN; (sj, 1) vr
Shorten Z Supp(s) vr

sCr

Shorten(A) = 1 VA€ A%,



Bounds - Secret Sharing

The optimum efficiency is upper-bounded by the optimum of
the following optimisation:

1 —1 —A{1
maximize  min og Shorten(N') — log Shorten(N — {1})

jeN—{1} log Shorten(N') — log Shorten(N — {j})
subjectto Supp(r) >0

ZSupp H RN; sj, rj)

Shorten Z Supp(s)

sCr

Shorten(N' — (AU {1})) = Shorten(N — A), VA€ Q
Shorten(N — (AU {1}))Shorten(N')
= Shorten(N' — A)Shorten(N' — {1}), VA& Q




e

Thank You !!
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