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Entropy inequalities: inequalities such as

H(A,C) +H(B,C) ≥ H(A,B,C) +H(C)

which are true for joint entropies of any random variables ina finite probability

distribution.

Linear rank inequalities: inequalities such as

dim(A+ C) + dim(B + C) ≥ dim(A+B + C) + dim(C)

which are true for joint dimensions of any subspaces of a finite vector space.
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Fact [CORRECTED]: Any entropy inequality is a linear rank inequality.

To show this, it suffices to turn any configuration of subspaces of a finite vector space

into a configuration of random variables whose joint entropies match the joint

dimensions of the subspaces (up to a scalar factor).

Given subspacesA,B, . . . of vector spaceV over the fieldFq with q elements, letf be

chosen uniformly at random from the set of linear functions fromV to Fq, and define

the random variablesxA = f |A, xB = f |B, etc.; then

H(xA) = (log q) dim(A)

H(xA, xB) = (log q) dim(A+B)

and so on.
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✞

✝

☎

✆
Shannon inequalities

H(∅) = 0

H(A) ≥ 0

H(A|B) = H(A,B)−H(B) ≥ 0

I(A;B) = H(A) +H(B)−H(A,B) ≥ 0

I(A;B|C) = H(A,C) +H(B,C)−H(C)−H(A,B,C) ≥ 0

Or any nonnegative linear combination of these.
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✞

✝

☎

✆
Shannon inequalities

H(∅) = 0

H(A) ≥ 0

H(A) = dimA

H(A|B) = H(A,B)−H(B) ≥ 0

H(A|B) = dim ((A+ B)/B)

I(A;B) = H(A) +H(B)−H(A,B) ≥ 0

I(A;B) = dim (A ∩B)

I(A;B|C) = H(A,C) +H(B,C)−H(C)−H(A,B,C) ≥ 0

I(A;B|C) = dim (((A+ C) ∩ (B + C))/C)

Or any nonnegative linear combination of these.
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A vector (assigning a real number to each subset of{A,B, . . . }) is entropic if it is the

list of joint entropies of some random variables over a finiteprobability distribution.

A vector is(linearly) representable if it is the list of joint subspace dimensions (ranks)

of some subspaces of a finite vector space.

A vector is apolymatroid if it satisfies the Shannon inequalities.
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The closure of the set of entropic vectors is a convex cone.

The closure of the set of nonnegative scalar multiples of vectors representable over a

fixed finite field is a convex cone.
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The closure of the set of entropic vectors is a convex cone.

The closure of the set of nonnegative scalar multiples of vectors representableover a

fixed finite fieldis a convex cone.
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For up to three variables, all entropy inequalities (and hence all linear rank

inequalities) are Shannon.
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✞

✝

☎

✆
The Zhang-Yeung entropy inequality (1998)

2I(A;B) ≤ I(C;D) + I(C;A,B) + 3I(A;B|C) + I(A;B|D)

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D)



11

✞

✝

☎

✆
The Zhang-Yeung entropy inequality (1998)

2I(A;B) ≤ I(C;D) + I(C;A,B) + 3I(A;B|C) + I(A;B|D)

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D)
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✞

✝

☎

✆
The Ingleton linear rank inequality (1969)

H(A) +H(B) +H(C,D) +H(A,B,C) +H(A,B,D)

≤ H(A,B) +H(A,C) +H(A,D) +H(B,C) +H(B,D)

I(A;B) ≤ I(A;B|C) + I(A;B|D) + I(C;D)
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✞

✝

☎

✆
The Ingleton linear rank inequality (1969)

H(A) +H(B) +H(C,D) +H(A,B,C) +H(A,B,D)

≤ H(A,B) +H(A,C) +H(A,D) +H(B,C) +H(B,D)

I(A;B) ≤ I(A;B|C) + I(A;B|D) + I(C;D)
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✞

✝

☎

✆
Copying random variables

If A, B, andC are sets of random variables, then one can construct a new setof

random variablesR such that:

• (A,B) and(R,B) are identically distributed;

• I(R;AC|B) = 0.

We say that “R is aC-copy ofA overB.”

p(A = a,B = b, C = c, R = r) =
p(A = a,B = b, C = c)p(A = r, B = b)

p(B = b)
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✞

✝

☎

✆
The Zhang-Yeung inequality

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D)

is a consequence of “R is aD-copy ofC overAB”.
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✞

✝

☎

✆
The Zhang-Yeung inequality

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D)

+ 3I(R;CD|AB)− (H(R)−H(C)) + 2(H(RA)−H(CA))

+ 2(H(RB)−H(CB))− 3(H(RAB)−H(CAB))

is a Shannon inequality.
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✞

✝

☎

✆
The Zhang-Yeung inequality

I(C;D|R) + I(C;R|A) + I(C;R|B) + I(C;R|ABD) + I(D;R|A) +

I(D;R|B) + I(D;R|ABC) + I(A;B|CR) + I(A;B|DR) + I(AB;R|CD) +

I(A;B) = 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D)

+ 3I(R;CD|AB)− (H(R)−H(C)) + 2(H(RA)−H(CA))

+ 2(H(RB)−H(CB))− 3(H(RAB)−H(CAB))

is an entropy identity.



18

✞

✝

☎

✆
Inequalities obtained from two copy variables

2I(A;B) ≤ 5I(A;B|C) + 3I(A;C|B) + I(B;C|A)

+ 2I(A;B|D) + 2I(C;D)

2I(A;B) ≤ 4I(A;B|C) + 2I(A;C|B) + I(B;C|A)

+ 3I(A;B|D) + I(A;D|B) + 2I(C;D)

2I(A;B) ≤ 4I(A;B|C) + 4I(A;C|B) + I(B;C|A)

+ 2I(A;B|D) + I(A;D|B) + I(B;D|A) + 2I(C;D)

2I(A;B) ≤ 3I(A;B|C) + 3I(A;C|B) + 3I(B;C|A)

+ 2I(A;B|D) + 2I(C;D)

2I(A;B) ≤ 3I(A;B|C) + 4I(A;C|B) + 2I(B;C|A)

+ 3I(A;B|D) + I(A;D|B) + 2I(C;D)

2I(A;B) ≤ 3I(A;B|C) + 2I(A;C|B) + 2I(B;C|A)

+ 2I(A;B|D) + I(A;D|B) + I(B;D|A) + 2I(C;D)
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✞

✝

☎

✆
Common form of inequalities

aI(A;B) ≤ bI(A;B|C) + cI(A;C|B) + dI(B;C|A)

+ eI(A;B|D) + fI(A;D|B) + gI(B;D|A)

+ hI(C;D) + iI(C;D|A)
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✞

✝

☎

✆
Inequalities obtained from three copy variables

2I(A;B) ≤ 3I(A;B|C) + 3I(A;C|B) + 2I(B;C|A)

+ 2I(A;B|D) + 2I(C;D)

2I(A;B) ≤ 5I(A;B|C) + 2I(A;C|B) + I(B;C|A)

+ 2I(A;B|D) + 2I(C;D)

2I(A;B) ≤ 4I(A;B|C) + I(A;C|B) + 3I(B;C|A)

+ 2I(A;B|D) + 2I(C;D)

etc.
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✞

✝

☎

✆
Inequalities obtained from three copy variables

34 new inequalities (744 counting permutations)

plus 1 previous inequality (24 counting permutations)
✞

✝

☎

✆
Inequalities obtained from four copy variables

(using at most three copy steps)

203 new inequalities (4632 counting permutations)

plus 11 previous inequalities (264 counting permutations)
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✞

✝

☎

✆
Generating new inequalities from known ones

2I(A;B) ≤ 5I(A;B|C) + 3I(A;C|B) + I(B;C|A) + 2I(A;B|D) + 2I(C;D)

follows from “R is aD-copy ofA overBC” and instances of the Zhang-Yeung

inequality.
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2I(A;B) ≤ 5I(A;B|C) + 3I(A;C|B) + I(B;C|A) + 2I(A;B|D) + 2I(C;D)

follows from “R is aD-copy ofA overBC” and the following instance of the

Zhang-Yeung inequality:

I(AR;BR) ≤ 2I(AR;BR|CR) + I(AR;CR|BR) + I(BR;CR|AR)

+ I(AR;BR|D) + I(CR;D)
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2I(A;B) ≤ 5I(A;B|C) + 3I(A;C|B) + I(B;C|A) + 2I(A;B|D) + 2I(C;D)

+ I(AR;BR)− 2I(AR;BR|CR)− I(AR;CR|BR)

− I(BR;CR|AR)− I(AR;BR|D)− I(CR;D)

follows from “R is aD-copy ofA overBC”.
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I(A;B) + I(A;B) ≤ 2I(A;B|C) + 2I(A;B|C) + I(A;B|C)

+ I(A;C|B) + I(A;C|B) + I(A;C|B) + I(B;C|A)

+ I(A;B|D) + I(A;B|D) + I(C;D) + I(C;D)

+ I(AR;BR)− 2I(AR;BR|CR)− I(AR;CR|BR)

− I(BR;CR|AR)− I(AR;BR|D)− I(CR;D)

follows from “R is aD-copy ofA overBC”.
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I(A;B) + I(A;B) ≤ 2I(A;B|C) + 2I(A;B|C) + I(A;B|C)

+ I(A;C|B) + I(A;C|B) + I(A;C|B) + I(B;C|A)

+ I(A;B|D) + I(A;B|D) + I(C;D) + I(C;D)

+ I(AR;BR)− 2I(AR;BR|CR)− I(AR;CR|BR)

− I(BR;CR|AR)− I(AR;BR|D)− I(CR;D)

follows from “R is aD-copy ofA overBC”.
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aI(A;B) + dI(A;B) ≤ bI(A;B|C) + 2dI(A;B|C) + hI(A;B|C)

+ aI(A;C|B) + cI(A;C|B) + dI(A;C|B) + dI(B;C|A)

+ aI(A;B|D) + dI(A;B|D) + dI(C;D) + hI(C;D)

+ aI(AR;BR)− bI(AR;BR|CR)− cI(AR;CR|BR)

− dI(BR;CR|AR)− aI(AR;BR|D)− hI(CR;D)

follows from “R is aD-copy ofA overBC”.
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(a+ d)I(A;B) ≤ (b+ 2d+ h)I(A;B|C) + (a+ c+ d)I(A;C|B) + dI(B;C|A)

+ (a+ d)I(A;B|D) + (d+ h)I(C;D)

+ aI(AR;BR)− bI(AR;BR|CR)− cI(AR;CR|BR)

− dI(BR;CR|AR)− aI(AR;BR|D)− hI(CR;D)

follows from “R is aD-copy ofA overBC”.
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(a+ d)I(A;B) ≤ (b+ 2d+ h)I(A;B|C) + (a+ c+ d)I(A;C|B) + dI(B;C|A)

+ (a+ d)I(A;B|D) + (d+ h)I(C;D)

follows from “R is aD-copy ofA overBC” and:

aI(AR;BR) ≤ bI(AR;BR|CR) + cI(AR;CR|BR) + dI(BR;CR|AR)

+ aI(AR;BR|D) + hI(CR;D)
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(a+ d)I(A;B) ≤ (b+ 2d+ h)I(A;B|C) + (a+ c+ d)I(A;C|B) + dI(B;C|A)

+ (a+ d)I(A;B|D) + (d+ h)I(C;D)

follows from “R is aD-copy ofA overBC” and an instance of:

aI(A;B) ≤ bI(A;B|C) + cI(A;C|B) + dI(B;C|A)

+ aI(A;B|D) + hI(C;D)
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If

aI(A;B) ≤ bI(A;B|C) + cI(A;C|B) + dI(B;C|A)

+ aI(A;B|D) + hI(C;D)

is an entropy inequality, then

(a+ d)I(A;B) ≤ (b+ 2d+ h)I(A;B|C) + (a+ c+ d)I(A;C|B) + dI(B;C|A)

+ (a+ d)I(A;B|D) + (d+ h)I(C;D)

is an entropy inequality.
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Iterating this rule gives:

I(A;B) ≤ 2I(A;B|C) + I(A;C|B) + I(B;C|A) + I(A;B|D) + I(C;D)

2I(A;B) ≤ 5I(A;B|C) + 3I(A;C|B) + I(B;C|A) + 2I(A;B|D) + 2I(C;D)

3I(A;B) ≤ 9I(A;B|C) + 6I(A;C|B) + I(B;C|A) + 3I(A;B|D) + 3I(C;D)

4I(A;B) ≤ 14I(A;B|C) + 10I(A;C|B) + I(B;C|A) + 4I(A;B|D) + 4I(C;D)

5I(A;B) ≤ 20I(A;B|C) + 15I(A;C|B) + I(B;C|A) + 5I(A;B|D) + 5I(C;D)

6I(A;B) ≤ 27I(A;B|C) + 21I(A;C|B) + I(B;C|A) + 6I(A;B|D) + 6I(C;D)

7I(A;B) ≤ 35I(A;B|C) + 28I(A;C|B) + I(B;C|A) + 7I(A;B|D) + 7I(C;D)

. . .

This is another way of generating the list of inequalities that Mat́uš proved and showed

could not follow from finitely many entropy inequalities.
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I(A;B) ≤ (x+ 1)I(A;B|C) + yI(A;C|B) + zI(B;C|A) + I(A;B|D) + I(C;D)
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✞

✝

☎

✆
The Ingleton inequality

I(A;B) ≤ I(A;B|C) + I(A;B|D) + I(C;D)

This inequality and the Shannon inequalities generate all linear rank inequalities on

four variables. (Hammer-Romashchenko-Shen-Vereshchagin)
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For four variables, the Shannon region consists of the representable regions together

with six (conified) simplices, one for each of the permuted-variable forms of the

Ingleton inequality. The entropy region consists of the representable region together

with a proper subset of each of the six simplices.
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✞

✝

☎

✆Common informations

Random variableZ is acommon information of random variablesA andB if:

H(Z|A) = 0

H(Z|B) = 0

H(Z) = I(A;B)

Common informations do not always exist, but they do in the case thatA andB come

from vector subspaces (Z will correspond to the intersection of these subspaces).
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✞

✝

☎

✆
24 new five-variable linear rank inequalities

I(A;B) ≤ I(A;B|C) + I(A;B|D) + I(C;D|E) + I(A;E)

I(A;B) ≤ I(A;B|C) + I(A;C|D) + I(A;D|E) + I(B;E)

I(A;B) ≤ I(A;C) + I(A;B|D) + I(B;E|C) + I(A;D|C,E)

. . .

I(A;C,D) + I(B;C,D) ≤ I(B;D) + I(B;C|E) + I(C;E|D) + I(A;E)

+ I(A;C|B,D) + I(A,B;D|C) + I(A;D|B,E) + I(A;B|D,E)
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✞

✝

☎

✆
Five-variable inequalities

These 24 (1700 counting permutations) inequalities, together with 4 (120) instances of

the Ingleton inequality and 5 (85) elemental Shannon inequalities, give the complete

nonredundant list of five-variable linear rank inequalities.
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✞

✝

☎

✆
Extreme rays for five-variable linear ranks

162 extreme rays (7943 counting permutations)

All have been verified to be representable over any sufficiently large field.
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The following are Shannon inequalities:

H(Z|R) + I(R;S|T ) ≥ I(Z;S|T )

H(Z|R) +H(Z|S) + I(R;S|T ) ≥ I(Z;Z|T )

= H(Z|T )

Actually, one can improve the latter inequality to:

H(Z|R) +H(Z|S) + I(R;S|T ) ≥ H(Z|T ) +H(Z|R, S, T )
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✞

✝

☎

✆
Proof of the Ingleton inequality

I(C;D)

�
�

❅
❅

I(A;B|C) I(A;B|D)

Z is a common information ofA andB
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✞

✝

☎

✆
Proof of the Ingleton inequality

I(C;D)

�
�

❅
❅

I(A;B|C) I(A;B|D)

✁
✁

❆
❆

✁
✁

❆
❆

H(Z|A) H(Z|B) H(Z|A) H(Z|B)

Z is a common information ofA andB
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✞

✝

☎

✆
Proof of the Ingleton inequality

I(C;D)

�
�

❅
❅

H(Z|C) H(Z|D)

Z is a common information ofA andB
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✞

✝

☎

✆
Proof of the Ingleton inequality

H(Z)

Z is a common information ofA andB
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✞

✝

☎

✆
Proof of the Ingleton inequality

I(A;B)

Z is a common information ofA andB
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I(A;E)

❅
❅

I(C;D|E)

✁
✁

❆
❆

I(A;B|C) I(A;B|D)

I(A;B) ≤ I(A;E) + I(C;D|E) + I(A;B|C) + I(A;B|D)



47

✞

✝

☎

✆
Another linear rank inequality

I(B;D)

✁✁
I(A;B,C|B)

❆❆
I(A;C,D|D)

❆❆
I(B,C;C,E|C,D)

❆❆
I(A;B,C|C,E)

I(C;E)

✁✁ ❆❆
I(A;B,C|C)

❆❆
I(B,D;C,E|D,E)

I(A;D,E|E)

2I(A;B,C) ≤ I(A;C|B) + I(B;D) + I(A;C|D) + I(B;E|C,D) + I(A;B|C,E)

+ I(A;B|C) + I(C;E) + I(A;D|E) + I(B;C|D,E)
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✞

✝

☎

✆
Six-variable inequalities — partial results

The sharp six-variable inequalities include 6 (246) elemental Shannon inequalities, 12

(1470) instances of the Ingleton inequality, and 167 (61740) instances of the new

five-variable inequalities. In addition to these, we currently have 746458 (531344600)

true six-variable inequalities, proved using one, two, or three common informations.

We also have a stockpile of 27907 (17251597) six-variable polymatroids which have

been verified to be representable and give extreme rays of thelinear rank region.
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Differences in computational methods:

Higher dimension

Sharp inequalities

Actual representable polymatroids

(generic vector selection)

Yet to come:

Dependence on characteristic
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Can methods that have so far been used only on one side (entropy inequalities or linear

rank inequalities) be used on the other side as well?
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The End.


