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A Generic Network Problem

Consider the following acyclic discrete memory-less network and assume that each
source needs to transmit to its corresponding destination at rate Ri ,
i = 1, 2, . . . ,m:
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It is not terribly hard to show that (cf. Ahlswede) the rate region for reliable
communication is

R = cl

{
Ri , i = 1, . . . ,m | Ri <

1
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(
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i )− H(XT
i |ST

i )
)}

as T →∞
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A Generic Network Problem

Equivalently, if we are interested in optimizing a certain linear combination of the
rates, we must solve

lim
T→∞

sup
p(ST

i ) and network operations

m∑
i=1

αi
1

T

(
H(XT

i )− H(XT
i |ST

i )
)

This problem is notoriously difficult, since

• it is infinite-dimensional (what is called an infinite-letter characterization)

• for any T , the problem is highly non-convex in the p(ST
i ) and the “network

operations”

Ergo: No one does it this way!
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Normalized Entropy Vectors

Consider n discrete random variables with alphabet-size N. For any set
S ⊆ {1, . . . , n}, we have the normalized entropy hS = 1

logN H(Xi , i ∈ S). The
2n − 1 dimensional vector obtained from these entropies, is called a normalized
entropy vector.

Conversely, any 2n − 1 dimensional vector which can be regarded as the entropy
vector of some collection of n random variables, for some value of N, is called
normalized entropic.
We will denote space of normalzied entropic vectors is denoted by Ξ∗n.
We have focused on normalized entropy, since it is what somes up in

m∑
i=1

αi
1

T

(
H(XT

i ) + H(ST
i )− H(XT

i ,S
T
i )
)
.

and since it makes the the space Ξ∗n compact (a finite region), hS ≤ |S|.

April 15, 2013 4 / 50



Normalized Entropy Vectors

Consider n discrete random variables with alphabet-size N. For any set
S ⊆ {1, . . . , n}, we have the normalized entropy hS = 1

logN H(Xi , i ∈ S). The
2n − 1 dimensional vector obtained from these entropies, is called a normalized
entropy vector.
Conversely, any 2n − 1 dimensional vector which can be regarded as the entropy
vector of some collection of n random variables, for some value of N, is called
normalized entropic.

We will denote space of normalzied entropic vectors is denoted by Ξ∗n.
We have focused on normalized entropy, since it is what somes up in

m∑
i=1

αi
1

T

(
H(XT

i ) + H(ST
i )− H(XT

i ,S
T
i )
)
.

and since it makes the the space Ξ∗n compact (a finite region), hS ≤ |S|.

April 15, 2013 4 / 50



Normalized Entropy Vectors

Consider n discrete random variables with alphabet-size N. For any set
S ⊆ {1, . . . , n}, we have the normalized entropy hS = 1

logN H(Xi , i ∈ S). The
2n − 1 dimensional vector obtained from these entropies, is called a normalized
entropy vector.
Conversely, any 2n − 1 dimensional vector which can be regarded as the entropy
vector of some collection of n random variables, for some value of N, is called
normalized entropic.
We will denote space of normalzied entropic vectors is denoted by Ξ∗n.

We have focused on normalized entropy, since it is what somes up in

m∑
i=1

αi
1

T

(
H(XT

i ) + H(ST
i )− H(XT

i ,S
T
i )
)
.

and since it makes the the space Ξ∗n compact (a finite region), hS ≤ |S|.

April 15, 2013 4 / 50



Normalized Entropy Vectors

Consider n discrete random variables with alphabet-size N. For any set
S ⊆ {1, . . . , n}, we have the normalized entropy hS = 1

logN H(Xi , i ∈ S). The
2n − 1 dimensional vector obtained from these entropies, is called a normalized
entropy vector.
Conversely, any 2n − 1 dimensional vector which can be regarded as the entropy
vector of some collection of n random variables, for some value of N, is called
normalized entropic.
We will denote space of normalzied entropic vectors is denoted by Ξ∗n.
We have focused on normalized entropy, since it is what somes up in

m∑
i=1

αi
1

T

(
H(XT

i ) + H(ST
i )− H(XT

i ,S
T
i )
)
.

and since it makes the the space Ξ∗n compact (a finite region), hS ≤ |S|.

April 15, 2013 4 / 50



Convexity of Ξ∗n

We should not that, for any fixed N, the set of normalized entropy vectors is
highly non-convex. However,

Theorem

The closure of the space of entropic vectors, Ξ̄∗n is compact and convex.

• One simple proof uses time-sharing

• It should also be clear that

cone(Ξ̄∗n) = Γ̄∗n.
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Networks and Entropy

But what does all this say about our network problem?

Well, networks put two types of constraints on entropy vectors:

1 topological constraints

2 channel constraints
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Topological Constraints
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Assume the signals Xi1 , . . . ,Xik arrive at a non-source node and the signals
Xj1 , . . . ,Xjl are transmitted. This can be represented as the following linear
constraints on the entropy vector:

h(Xjq ,Xi1 , . . . ,Xik )− h(Xi1 , . . . ,Xik ) = 0 q = 1, . . . l

At source nodes, if Si and Sj are independent,

h(Si ,Sj)− h(Si )− h(Sj) = 0.
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Channel Constraints

- -p(Xj |Xi)
Xi Xj

Channel constraints do not translate directly to entropies. What they do is
constrain the joint distribution of all random variables in the network

p(Xi ,Xj) = p(Xj |Xi )p(Xi ),

or, equivalently,∫ ∏
k 6=i,j

dXk p(X1, . . . ,Xn) = p(Xj |Xi )

∫ ∏
k 6=j

dXk p(X1, . . . ,Xn),

which is a linear constraint on the joint distribution. Thus, the space of

entropic vectors remains convex under channel constraints.
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Wired Networks

- -p(Xj |Xi)
Xi Xj

In this case, things simplify considerably. In fact, the only inequality we need is

h(Xi ) + h(Xj)− h(Xi ,Xj) ≤ Cij ,

where Cij is the Shannon capacity of the link.

Furthermore, if we use channel coding to make the link error-free, Xi and Xj can
be replaced by the single random variable Zij and the constraint

h(Zij) ≤ Cij .
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Convex Formulation of the Network Problem

Theorem

The problem of determining the capacity of an acyclic, memoryless wired network
can be reduced to the optimization problem

max
m∑
i=1

αi (h(Xi ) + h(Si )− h(Xi ,Si )) ,

subject to h ∈ Γ̄∗n and

• h(S1, . . . ,Sm) =
∑m

i=1 h(Si ), for sources

• h(Xout ,XIn)− h(XIn) = 0, for topological constraints

• h(Xi ) ≤ Ci , for channel constraints

Thus, by going to the space of entropy vectors, we have circumvented both the

infinite-letter characterization problem, as well as the non-convexity.
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Remarks

• Network information theory is essentially the problem of characterizing Γ̄∗n.

• Wired network problems reduce to convex optimization over Γ̄∗n, similar to
how network flow problems reduce to linear programming.

• To do so, three issues need to be addressed:

• given a vector in R2n−1, is it entropic?
• given an entropic vector, find an alphabet size and joint distribution

that achieves it (or comes arbitrarily close to it).
• can these be done in a distributed way?

• The framework results in an explosion in the number of variables.

• is this really necessary?

This is what we will focus on for the rest of the talk.
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Entropy and Groups

Given a finite group G , and G1, . . . ,Gn of its subgroups, the 2n − 1-dimensional
vector whose components are

vS = log
|G |

| ∩α∈S Gα|
.

for all S ⊆ {1, . . . , n}, is entropic.

Conversely, any entropic vector for some collection of n random variables, can be
scaled to correspond to some finite group and n of its subgroups [Chan and
Yeung].
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Abelian Groups and the Ingleton Inequality

One may ask what types of groups are needed to characterize Γ̄∗n? Here is an
important result.

Theorem (Chan)

If G is an Abelian group, then the resulting entropy vectors satisfy the Ingleton
bound

hij + hik + hil + hjk + hjl ≥ hijk + hijl + hkl + hi + hj .

The Ingleton bound was first discovered in the context of representable matroids.

It is known that entropy can violate the Ingleton bound (more on this in a

moment) and so Abelian groups are not sufficient.
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Where is This All Coming From?

Ans: Statistical mechanics and typical sequences

• Suppose we have T particles that can be in one of N states with probability
pi , i = 1, 2, . . . ,N.

• Then the typical micro-states will be those for which

Ti = Tpi .

• Since all typical micro-states are equally likely, this gives a quasi-uniform
distribution.

• The entropy is simply the log of the number of typical microstates

log
T !

T1!T2! . . .TN !
, Ti = Tpi ,

N∑
i=1

Ti = T .

One can think of the numerator as the size of the symmetric group ST of T

elements and the denominator as the size of a certain subgroup of ST .
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elements and the denominator as the size of a certain subgroup of ST .
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Entropy and Partitions

1 2 3

2’ 3’1’

{
T1 = 3 , T2 = 4 , T3 = 2

h1 = log 9!
3!4!2! = log 1260 = 10.3bits{

T1′ = 4 , T2′ = 2 , T3′ = 3
h2 = log 9!

4!2!3! = log 1260 = 10.3bits{
T11′ = 3 , T21′ = 1 , T22′ = 2 , T23′ = 1 , T33′ = 2

h12 = log 9!
3!1!2!1!2! = log 15120 = 13.9bits
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Staking Out the Entropy Region

• Take a set of size T and for each random variable partition it into N sets

• The entropies and joint entropies can be computed from the partitions and
their various intersections

• By making local changes to the partitions, we can move from one entropy
vector to the next

• As T and N grow, one can stake out the entire entropic region to desired
accuracy

• This idea can be used to perform random walks on entropy vectors and
thereby MCMC methods for entropy optimization
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Maximizing the Ingleton Bound via MCMC

I = hij + hik + hil + hjk + hjl − hkl − hijk − hijl − hi − hj

Figure : I < 0 is the Ingleton bound. Maximizing it with T = 100 and N = 2
using Monte Carlo Markov chain simulation achieved .025. The best prior
Ingleton-bound violating instance was .0072. (Plot: −I‖h‖ )
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Optimizing Information Flow in Networks

The same optimization can be done in networks, provided we respect the network
topology.

G1, P1

G2, P2

G3, P3

G3 ⊇ G1 ∩ G2 , P3 ⊆ P1 ∩ P2

• For example, the sum rate can be optimized in a distributed fashion

• Each edge randomly changes its partition based on information received by
the sinks
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Example - The Vamos Network

abcd

ab
w

x bc

ycd

z

aabcad

bcd
d

wants b wants a wants bc wants d wants c

• Constructed from the Vamos matroid—the smallest non-representable
matroid—8 elements and U(2, 4) and F7 minors

• Maximum rate unknown; known to be less than 60
11
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Example - The Vamos Network

• Dougherty et al give a six-dimensional linear vector solution with capacity 5.

• However, using an MCMC method, we have been able to find a nonlinear
binary solution with capacity 5 (here the search space has size 1012)
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Non-Pappus Matroid and Network

Figure : Another example of a nonrepresentable matroid.

The capacity of the corresponding network is unknown.

Figure : Nonlinear code N = 2, C = 0.6667.

Figure : Nonlinear code N = 3, C = 0.8228.

Figure : Linear code N = 2, C = 0.6667.

Figure : Linear code N = 3, C = 0.6667.
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The Group PGL(2, p)

(2,3) (1,3)(2,4) (1,4) (1,2)(3,4)

(1,2,4,3)

1

(1,4)(2,3)

(1,3,4,2)

(1,2,4,3) (1
,2,

5,4
)

(1,5,2,3)(1,3,2,5)

(1,2)(3,5)

(1,2,5,4)

(1,3,5,2,4) (1,4,2,5,3)

(1,2,3,4,5) (1,5,4,3,2)

(1,5,3,4)

(1,4,3,5)

(2,4,5,3)

(2,3,5,4)
1

1

(1,5) (1,4)(2,5) (2,4)

(1,4,5,2)

(1,5)(2,4)

(3,4,5) (3,5,4)

1

(1,2)(3,5)

(1,3)(4,5)(2,5)(3,4)

(1,5,)(2,4)(1,4)(2,3)

(1,2)(4,5)

(1,2)(3,4) (1,2)(4,5)

$G_1$

$G_4$$G_3$

$G_2$

(1
,4,

5,2
)(1,3,4,2)

• The groups based on partitions are somewhat unstructured.

• We have found the smallest Ingleton-violating group to be the projective
linear group PGL(2, 5) with 120 elements

• Its generalizations, PGL(2, p), for p ≥ 5, all violate Ingleton, as does the
general linear group GL(2, p). These can be used to construct codes
stronger than linear ones.
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Entropy Vectors for Continuous Random Variables

Let Xi ∈ Rm, i = 1, . . . , n be vector-valued continuous random variables. The
normalized entropy is now defined as

hS =
1

m
H(Xi , i ∈ S),

and the space of normalized entropic vectors denoted by Γ̄∗c,n.

Theorem (Chan)

Let ∑
α⊂{1,...,n}

kαhα ≥ 0,

be an inequality for continuous random variables. Then

∑
α⊂{1,...,n}

kαhα +
n∑

i=1

ri (hi,ic − hic ) ≥ 0,

for any ri ≥ 0 is an inequality for discrete random variables. Conversely any
inequality for discrete random variables must be of this form.
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Example

This implies that it is sufficient (and perhaps simpler) to study continuous
random variables.
For example, take n = 2. The only inequality in the continuous case is

h1 + h2 − h12 ≥ 0.

Thus, the inequalities for the discrete case are

h1 + h2 − h12 + r1(h12 − h2) + r2(h12 − h1) ≥ 0,

for any r1, r2 ≥ 0. For example:

r1 = 1, r2 = 0 : h1 ≥ 0

r1 = 0, r2 = 1 : h2 ≥ 0

r1 = 1, r2 →∞ h12 ≥ h1

r1 →∞, r2 = 1 h12 ≥ h2
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Gaussan Random Variables

The most obvious class of continuous random variables to consider are Gaussians.
In this case, we start with a nm × nm positive definite covariance matrix R. Let
RS be the principal minor determined by the rows and columns in set S. Then we
have

hS =
1

m
log detRS .

Thus, the study of entropy leads us to the study of determinant inequalities. This

is a subject with a long history.
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Determinantal Inequalities

• Hadamard Inequality

detR11detR22 ≥ det

[
R11 R12

R21 R22

]
.

• Koteljanskii Inequality

detRαdetRβ ≥ detRα∪βdetRα∩β .

There are perhaps 3 reasons why looking at Gaussians may be fruitful.
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Reason 1: They Work for n = 2, 3

Let Ωn denote the space of entropic vectors generated by vector-valued Gaussian
random variables.

Theorem

Ω̄∗2 = Γ̄∗c,2.

Theorem

For n = 3, the closure of the cone generated by vector-valued Gaussian entropic
vectors is Γ̄∗c,3.

Theorem

For n = 3, the closure of the convex cone generated by scalar-valued Gaussian
entropic vectors is Γ̄∗c,3.
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Reason 2: They Violate Ingleton

Linear codes over a finite field (or codes induced by finite Abelian groups) satisfy
the so-called Ingleton bound:

hij + hik + hil + hjk + hjl ≥ hijk + hijl + hkl + hi + hj .

It is known that there exist entropy vectors that violate the Ingleton bound,
though in the discrete case this is not easy to do (one needs nonlinear codes or
non-Abelian groups).
However, the Ingleton bound is easy to violate with Gaussians:

R =


1 1

4
1
2

1
2

1
4 1 1

2
1
2

1
2

1
2 1 0

1
2

1
2 0 1


Just check! (It is also known that Gaussians can achieve several non-Shannon

inequalities.)
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Reason 3: There is Hope for Characterizing Ω̄∗n

A 3× 3 symmetric matrix has 6 parameters and 7 principal minors. Thus, one
may expect that they satisfy some equation. Very recently, Holtz and Sturmfels
(2007) have shown that the principal minors p1, p2, p3, p12, p23, p31, p123 satisfy

(p123−p1p23−p2p31−p3p12 + 2p1p2p3)2 = 4(p1p2−p12)(p2p3−p23)(p3p1−p31).

And they recognized this as Cayley’s 2× 2× 2 hyperdeterminant.

What is going on?
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Reason 3: There is Hope for Characterizing Ω̄∗n

In general, an n × n symmetric matrix has n(n+1)
2 parameters and 2n = 1 principal

minors. Given the pi , the diagonals of the matrix are fixed. Given the pairwise
minors pij the off-diagonals are fixed, up to a sign.
For example for n = 3:

R =

 p1 ±
√

p1p2 − p12 ±
√

p1p3 − p13

±
√

p1p2 − p12 p2 ±
√

p2p3 − p23

±
√

p1p3 − p13 ±
√

p2p3 − p23 p3

 .
In fact, it is easy to see that out of the eight possible sign combinations, only two
give different values for p123. Holtz and Sturmfels showed that these two different
values satisfy a quadratic equation (which is the hyperdeterminant).
(One can use this general observation to determine whether 2n − 1 given numbers can

be the principal minors of an n × n symmetric matrix.)
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Cayley’s Hyperdeterminant

• The standard determinant can be obtained by looking at the bilinear form,∑
i,j

αijxiyj ,

and asking whether it has a nonzero stationary point. Taking derivatives
with respect to the xi , yj shows that this happens when the determinant of
the matrix defined by αij vanishes.

• If we instead consider the multi-linear form∑
i1,...,im

αi1...imxi1 . . . xim ,

the condition for having a nonzero stationary point is given by setting the
hyperdeterminant of αij equal to zero.

For example for n = 3, this is equivalent to the condition that the following 6
nonlinear equations have nonzero solutions x0, x1, y0, y1, z0, z1:

x0y0 + p1x1y0 + p2x0y1 + p12x1y1 = 0

p3x0y0 + p31x1y0 + p23x0y1 + p123x1y1 = 0

y0z0 + p2y1z0 + p3y0z1 + p23y1z1 = 0

p1y0z0 + p12y1z0 + p31y0z1 + p123y1z1 = 0

z0x0 + p3z1x0 + p1z0x1 + p31z1x1 = 0

p2z0x0 + p23z1x0 + p12z0x1 + p123z1x1 = 0

For n > 3 things get increasingly more complicated. (The 2× 2× 2× 2
hyperdeterminant was only first computed last year; it is a polynomial of degree
24 in 16 variables and has nearly 3 million coefficients.)
The connection to minors of matrices can be obtained by starting with the
multilinear form

det

 x0
y0

z0

+

 x1
y1

z1

A

 ,

and noting that it is equal to ∑
i,j,k

xiyjpijk .

Taking derivatives from the above determinantal expression, it is easy to show
that a nonzero stationary point exists. The idea can also be generalized to n > 3.
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n = 4

Define gijk = pijk − pipjk − pjpki − pkpij + 2pipjpk .

Theorem

The 15 principal minors of a 4× 4 symmetric matrix satisfy the 5 equations

g2
123 = 4(p1p2 − p12)(p2p3 − p23)(p3p1 − p31)

g2
124 = 4(p1p2 − p12)(p2p4 − p24)(p4p1 − p41)

g2
134 = 4(p1p3 − p13)(p3p4 − p34)(p4p1 − p41)

g123g124g134 = 4(p1p2 − p12)(p1p3 − p13)(p1p4 − p14)g234

p1234 = poly(pi , pij , pijk).

If one could obtain the convex cone of the above algebraic variety, it would yield

an Ingleton-bound-violating inner bound to Ω̄∗n.

April 15, 2013 32 / 50



Entropy and Matroids

• A (poly)matroid is a set of objects along with a rank function that satisfies
submodularity

• Entropy satisfies submodularity and therefore defines a polymatroid

H(A ∪ B) + H(A ∩ B) ≤ H(A) + H(B)

• However, not all matroids are entropic

• A matroid is called representable if it can be represented by a collection of
vectors over some (finite) field

• All representable matroids are entropic, but not all entropic matroids are
representable

• When a matroid is representable, the corresponding network problem has an
optimal solution which is a linear network code (over the field which
represents the matroid)
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The Fano Matroid

The Fano matroid has a representation only over GF (2)

A7 =

a b c d e f g 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


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The Fano Network

• The sources are a, b, c and the sinks require c , b, a, respectively

• Links are unit capacity

• What is the maximum rate?
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The Fano Network Solution

d = a + b , f = b + c , e = d + f = a + c , g = d + c = a + b + c

• Therefore the capacity is 3

• The network only has a solution on GF (2)
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The Non-Fano Matroid

The Non-Fano matroid has a representation over every field except GF (2)

B7 =

a b c d e f g 1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1


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The Non-Fano Network

• The sources are a, b, c and the sinks require c , b, a, respectively

• Links are unit capacity

• What is the maximum rate?
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The Non-Fano Network Solution

d = a + b , e = a + c , f = b + c , g = a + b + c

• Therefore the capacity is 4

• The network only has a solution except on GF (2)
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A Network with No Linear Solution

• This network has no linear coding solution with capacity 7

• The linear network coding capacity can be shown to be 70
11 < 7
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Capacity is 7

• A non-Abelian solution can be given

• Alternatively, view a, b, c , d , e, f , g on the LHS as elements of GF (2)n and
a, b, c , h, i , j , k on the RHS as elements of GF (2n + 1), such that

d = a⊕ b , f = b ⊕ c , e = d ⊕ f = a⊕ c , g = d ⊕ c = a⊕ b ⊕ c

h = a + b , i = a + c , j = b + c , k = a + b + c

• The resulting capacity is 7 n
log(2n+1) ≈ 7(1− 1

n2−n)
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Matroid Representations

• Unfortunately, determining whether a general matroid is representable is a
classical open problem in matroid theory

• However, the question of whether a matroid is binary representable has a
relatively simple answer

• the matroid must have no 4-element minor such that all pairs are
independent and all triples dependent—see matrix below[

1 0 1 ?
0 1 1 ?

]
Question: Is it possible to decompose an arbitrary network into two components:

a binary representable component, and a component involving U(2, 4) minors

(trivially representable in any other field), represent each component and then

somehow “glue” the solutions together?
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Binary Matroids

Theorem (Tutte 1958)

A matroid is binary representable iff it has no U(2, 4) minor.

Minors of a matroid are obtained by deletion and contraction of elements in the

ground set.
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Ternary and Quaternary Matroids

Theorem (Reid 1971;Bixby 1979;Seymour 1979)

A matroid is ternary representable iff it has no U(2, 5), U(3, 5), F7 or F∗7 minors.

Theorem (Geelen, Gerards, Kapoor 1997)

A matroid is quaternary representable iff it has no U(2, 6), U(4, 6), F−7 , (F−7 )∗,
P6, P8 or P ′′8 minors.
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Binary Entropic Vectors

• For random variables deletion corresponds marginalization and contraction
corresponds to conditioning

Theorem

A vector in R2n−1 is the entropic vector of n linearly-related binary random
variables iff

1 it has integer entries

2 h(XS) ≤ |S|

3 it satisfies submodularity

4 for every i , j , k , l ∈ {1, 2, . . . n} and every S ∈ {1, 2, . . . n} − {i , j , k, l}, the
15-dimensional entropy vector corresponding to {Xi ,Xj ,Xk ,Xl |XS} not be
U(2, 4)
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The Convex Cone of Binary Entropic Vectors

In order to solve general network problems over the binary field, we need to know
the convex cone of binary entropic vectors

Theorem

A vector in R2n−1 is in the convex cone of the entropic vectors of n
linearly-related scalar binary random variables iff

1 it is in the cone of matroids, M

2 for every i , j , k , l ∈ {1, 2, . . . n} and every S ∈ {1, 2, . . . n} − {i , j , k, l}, the
15-dimensional entropy vector corresponding to {Xi ,Xj ,Xk ,Xl |XS} be in the
convex cone of the entropic vectors of four binary random variables

The convex cone of the entropic vectors of four binary random variables is given

by the Ingleton inequality and 5 other types of inequalities.
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The Capacity of Scalar Binary Linear Networks

We call a scalar binary linear network, one in which nodes either route packets,
combine them via XORs or time-share between these two.

Theorem

The problem of determining the capacity of an acyclic, memoryless wired network
using only scalar binary linear codes can be reduced to

max
m∑
i=1

αi (h(Xi ) + h(Si )− h(Xi ,Si )) ,

subject to h ∈M and

• h(S1, . . . ,Sm) =
∑m

i=1 h(Si ), for sources

• h(Xout ,XIn)− h(XIn) = 0, for topological constraints

• h(Xi ) ≤ Ci , for channel constraints

• the entropy vector for {Xi ,Xj ,Xk ,Xl |XS}, S ∈ {1, 2, . . . n} − {i , j , k, l} lies
in the convex cone of the entropic vectors of four binary random variables
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Remarks

• The above problem is a linear program

• One problem is that the cone M is not known

• If we move towards vector-valued binary random variables, then the cone M
is replaced by the polymatroidal cone, Γn

• The problem here is that the characterization of representable
vector-valued binary matroids is not know

• The uniform matroid U(2, 4) is, for example, vector binary
representable 

1 0
0 1
0 0
0 0︸ ︷︷ ︸

a

0 0
0 0
1 0
0 1︸ ︷︷ ︸

b

1 0
0 1
1 0
0 1︸ ︷︷ ︸

c

1 0
0 1
0 1
1 1︸ ︷︷ ︸

d


• In general, the complexity of the linear program is exponential:

• there are 2n − 1 variables

• there are n +
(n

2
)

2n−2 submodular inequalities

• there are
(n

4
)

2n−4 minors to consider

• However, if we define

r = max(# of sources +2,maximum fan-in +1),

then

• there are only nr variables
• there are only nr minors to consider
• there could be significantly fewer submodular inequalities to consider
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Remarks

Conclusion:

• If the cone of matroids, M, can be determined then finding optimal linear
scalar codes over the binary, ternary and quaternary fields reduces to linear
programming

• when the number of sources and the fan-in of the network is small, the
linear program is computationally tractable

• If the condition for vector binary representability can be established, then M
can be replaced by Γn and we obtain a linear programming solution for
finding optimal linear vector codes

The above can be done with reasonable complexity if the alphabet size, or T and

N are small.
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Conclusion

• Showed that a large class of network information theory problems can be
cast as convex optimization problems over the convex set of entropy vectors.

• Thus, the problem is to characterize Γ̄∗n, the space of entropy vectors, which
for n ≥ 4 is a fundamental open problem.

• Explored connections to matroids, non-Shannon inequalities, quasi-uniform
distributions, finite groups, determinantal inequalities

• Developed a distributed MCMC method (via random walks over partitions)
for the design of optimal linear and nonlinear codes over small alphabet sizes

• Identified the smallest Ingleton-bound-violating group, PGL(2, 5)

• Reduced the design of optimal linear codes over GF (2), GF (3) and GF (4)
for arbitrary networks to linear programming. Problem is to reduce the
number of inequalities.
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