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Outline

• Network Information Theory

– convex optimization problem over set of entropy vectors

– wired networks

• Characterization of Γ∗
n

– Shannon and non-Shannon inequalities; matroids

– quasi-uniform distributions; finite groups

– Gaussians and hyperdeterminants

• Network Coding

– matroids and representation

– linear binary coding

– nonlinear codes and MCMC
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Introduction

There has been a growing interest in information transmission over

networks, spurred by

• wired networks, such as the Internet

• wireless networks (cellular networks, Bluetooth, sensor nets, etc.)

In fact, due to recent advances in wireless technology and RF circuitry:

• wireless devices (and other devices enhanced with wireless

capabilities) are becoming more and more ubiqitous

• this will allow the emergence of the next generation of mobile ad hoc

networks (MANETs)

Despite all this we know very little about how to optimally

operate most networks.
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What is a Network?

A network is a collection of nodes and edges connecting them:

Nodes can be

• transmitters (sources of information)

• receivers (sinks of information)

• relays (facilitators of information transmission)

or any combination of the above.

Edges represent the existence of a communication channel between nodes

(cable, fiber optic, wireless, etc.)
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Single-User Information Theory

Single-user information deals with the study of the fundamental limits of

reliable information transmission between a sender and a receiver over a

noisy channel.

• theory has been developed by Shannon (1948) and is well understood

- -p(y|x)
x y

C = max
pX (·)

H(x) + H(y) − H(x, y),

where H(x), H(y) and H(x, y) are the entropies of x, y, and {x, y}.

H = −
NX

i=1

pi log pi.
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Network Information Theory

Network information theory similarly deals with the study of the

fundamental limits of reliable information transmission among muliple

users.

However, unlike the single user case, almost all network information

theory problems are open.

• computing the capacity of even a three-node network is open

transmitter receiver

relay
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So how are networks currently operated?

• almost invariably via a two-step division of labor

1. use coding to make each link error free (up to the Shannon

capacity)

2. view information as a “flow” and solve a flow problem over the

network (routing, etc.)

But is information a flow?
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Is Information a Flow?

transmitter

receiver 1 receiver 2

a

a

a

b

b

b

x

xx

• if we view information as a flow, then x can be only a or b (or a

time-sharing of the two) which means the rate is 1.5 bits

• however, if we combine a and b via modulo-2 addition, x = a + b,

both receivers can recover a and b and the rate increases to 2 bits
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A Generic Network Problem

Consider the following acyclic discrete memory-less network and assume

that each source needs to transmit to its corresponding destination at

rate Ri, i = 1, 2, . . . , m:

-

-

-

-

-

-

S1

S2

Sm

X1

X2

Xm

Network

It is not terribly hard to show that (cf. Ahlswede) the rate region for

reliable communication is

R = cl



Ri, i = 1, . . . , m | Ri <
1

T

“

H(XT
i ) − H(XT

i |ST
i )

”ff

as T → ∞
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Equivalently, if we are interested in optimizing a certain linear

combination of the rates, we must solve

lim
T→∞

sup
p(ST

i ) and network operations

mX

i=1

αi
1

T

“

H(XT
i ) − H(XT

i |ST
i )

”

This problem is notoriously difficult, since

• it is infinite-dimensional (what is called an infinite-letter

characterization)

• for any T , the problem is highly non-convex in the p(ST
i ) and the

“network operations”

Ergo: No one does it this way!
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Entropy Vectors

Consider n discrete random variables with alphabet-size N . For any set

S ⊆ {1, . . . , n}, we have the normalized entropy hS = 1
log N

H(Xi, i ∈ S).

The 2n − 1 dimensional vector obtained from these entropies, is called an

entropy vector.

Conversely, any 2n − 1 dimensional vector which can be regarded as the

entropy vector of some collection of n random variables, for some value

of N , is called entropic.

The space of entropic vectors is denoted by Γ∗
n.

We have focused on normalized entropy, since it is what somes up in

mX

i=1

αi
1

T

“

H(XT
i ) + H(ST

i ) − H(XT
i , S

T
i )

”

.

and since it makes the the space Γ∗
n compact (a finite region), hS ≤ |S|.
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Convexity of Γ∗

n

We should not that, for any fixed N , the set of entropy vectors is highly

non-convex. However,

Theorem 1 The closure of the space of entropic vectors, Γ̄∗
n is compact

and convex.

• One simple proof uses time-sharing
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Networks and Entropy

But what does all this say about our network problem?

Well, networks put two types of constraints on entropy vectors:

1. topological constraints

2. channel constraints
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Topological Constraints
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Assume the signals Xi1 , . . . , Xik
arrive at a non-source node and the

signals Xj1 , . . . , Xjl
are transmitted. This can be represented as the

following linear constraints on the entropy vector:

h(Xjq ,Xi1 , . . . , Xik
) − h(Xi1 , . . . , Xik

) = 0 q = 1, . . . l

At source nodes, if Si and Sj are independent,

h(Si, Sj) − h(Si) − h(Sj) = 0.
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Channel Constraints

- -p(Xj|Xi)
Xi Xj

Channel constraints do not translate directly to entropies. What they do

is constrain the joint distribution of all random variables in the network

p(Xi, Xj) = p(Xj |Xi)p(Xi),

or, equivalently,
Z

Y

k 6=i,j

dXk p(X1, . . . , Xn) = p(Xj |Xi)

Z
Y

k 6=j

dXk p(X1, . . . , Xn),

which is a linear constraint on the joint distribution. Thus, the space

of entropic vectors remains convex under channel constraints.
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Wired Networks

- -p(Xj|Xi)
Xi Xj

In this case, things simplify considerably. In fact, the only inequality we

need is

h(Xi) + h(Xj) − h(Xi, Xj) ≤ Cij ,

where Cij is the Shannon capacity of the link.

Furthermore, if we use channel coding to make the link error-free, Xi and

Xj can be replaced by the single random variable Zij and the constraint

h(Zij) ≤ Cij .
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Convex Formulation of the Network Problem

Theorem 2 The problem of determining the capacity of an acyclic,

memoryless wired network can be reduced to the optimization problem

max
mX

i=1

αi (h(Xi) + h(Si) − h(Xi, Si)) ,

subject to h ∈ Γ̄∗
n and

• h(S1, . . . , Sm) =
Pm

i=1 h(Si), for sources

• h(Xout,XIn) − h(XIn) = 0, for topological constraints

• h(Xi) ≤ Ci, for channel constraints

Thus, by going to the space of entropy vectors, we have circumvented

both the infinite-letter characterization problem, as well as the

non-convexity.
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Remarks

• Network information theory is essentially the problem of

characterizing Γ̄∗
n.

• Wired network problems reduce to convex optimization over Γ̄∗
n,

similar to how network flow problems reduce to linear programming.

• To do so, three issues need to be addressed:

– given a vector in R2n−1, is it entropic?

– given an entropic vector, find an alphabet size and joint

distribution that achieves it (or comes arbitrarily close to it).

– can these be done in a distributed way?

• The framework results in an explosion in the number of variables.

– is this really necessary?

This is what we will focus on for the rest of the talk.
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Matroids and Submodular Functions

• The work of Han, Fujishige, Zhang and Yeung, has resulted in the

complete characterization of Γ∗
n for n = 2, 3. In particular, entropy

defines a (poly)matroid

1. h∅ = 0

2. For α ⊆ β: hα ≤ hβ

3. For any α, β: hα∪β + hα∩β ≤ hα + hβ

• The last inequality is called the submodularity property.

• Any inequalities obtained as positive linear combinations of these

are referred to as Shannon inequalities.

• The space of all vectors of 2n − 1 dimensions whose components

satisfy all such Shannon inequalities is denoted by Γn (it is

essentially the space of all polymatroidal vectors). It has been

shown that

Γ∗
2 = Γ2 and Γ∗

3 = Γ3
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Non-Shannon Inequalities

• For n ≥ 4, recently several non-Shannon-type information

inequalities have been discovered (Zhang and Yeung, Romashchenko

et al, Zeger et al, Matus). Here is the original one (ZY98):

I(X3;X4) ≤ I(X3; X4|X1) + I(X3; X4|X2) +
1

2
I(X1; X2) +

1

4
I(X1; X3, X4) +

1

4
I(X2; X3, X4).

These inequalities demonstrate that Γ∗
4 is strictly smaller than Γ4:

Γ∗
4 ⊂ Γ4.

• An important and well-studied class of matroids are representable

ones, i.e., those matroids that can be represented by a set of vectors

in some finite field and with the usual rank function.

If we denote the set of such representable matroidal vectors by Γr
n:

Γr
n ⊂ Γ∗

n ⊂ Γn, for n ≥ 4
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Quasi-Uniform Distributions

The difficulty in characterizing Γ̄∗
n is that one must search over all joint

distributions of n random variables for all alphabet sizes.

However, it turns out that there is a certain class of distributions that

suffice.

A distribution is called quasi-uniform if its probability mass function, as

well as the probability mass function of all its marginals, takes on a

constant or zero value on all points in the sample space.

Let Λn denote the space of entropy vectors generated by quasi-uniform

distributions. Then

Theorem 3 The closure of the cone of Λn is the closure of Γ∗
n.
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Some quasi-uniform distributions for n = 2 and n = 3.
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Entropy and Groups

Given a finite group G, and G1, . . . , Gn of its subgroups, the

2n − 1-dimensional vector whose components are

vS = log
|G|

| ∩α∈S Gα|
.

for all S ⊆ {1, . . . , n}, is entropic.

Conversely, any entropic vector for some collection of n random

variables, corresponds to some finite group and n of its subgroups [Chan

and Yeung].
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Abelian Groups and the Ingleton Inequality

One may ask what types of groups are needed to characterize Γ̄∗
n? Here

is an important result.

Theorem 4 (Chan) If G is an Abelian group, then the resulting

entropy vectors satisfy the Ingleton bound

hij + hik + hil + hjk + hjl ≥ hijk + hijl + hkl + hi + hj .

The Ingleton bound was first discovered in the context of representable

matroids.

It is known that entropy can violate the Ingleton bound (more

on this in a moment) and so Abelian groups are not sufficient.
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Network Coding

transmitter

receiver 1 receiver 2

a

a

a

b

b

b

x

xx

• combines information packets; significantly outperforms routing

• linear schemes generally not optimal (Zeger et al); linear network

codes form an Abelian group

• how to do optimal (linear or otherwise) network coding is generally

not known
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Codes from Non-Abelian Groups

ab ba

a b
If a and b are chosen from a non-Abelian group, one may be able to infer

more about them from ab and ba.

a b

aba ba
2

a
2

b

There is also a larger set of signals that one may transmit.
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Where is This All Coming From?

Ans: Stat Mech and Typical Sequences

• Suppose we have T particles that can be in one of N states with

probability pi, i = 1, 2, . . . , N .

• Then the typical micro-states will be those for which

Ti = Tpi.

• Since all typical micro-states are equally likely, this gives a

quasi-uniform distribution.

• The entropy is simply the log of the number of microstates

log
T !

T1!T2! . . . TN !
, Ti = Tpi,

NX

i=1

Ti = T.

One can think of the numerator as the size of the symmetric group ST of

T elements and the denominator as the size of a certain subgroup of ST .
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Entropy and Partitions

1 2 3

2’ 3’1’
8

<

:

T1 = 3 , T2 = 4 , T3 = 2

h1 = log 9!
3!4!2!

= log 1260 = 10.3bits

8

<

:

T1′ = 4 , T2′ = 2 , T3′ = 3

h2 = log 9!
4!2!3!

= log 1260 = 10.3bits

8

<

:

T11′ = 3 , T21′ = 1 , T22′ = 2 , T23′ = 1 , T33′ = 2

h12 = log 9!
3!1!2!1!2!

= log 15120 = 13.9bits
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Staking Out the Entropy Region

• Take a set of size T and for each random variable partition it into N

sets

• The entropies and joint entropies can be computed from the

partitions and their various intersections

• By making local changes to the partitions, we can move from one

entropy vector to the next

• As T and N grow, one can stake out the entire entropic region to

desired accuracy

• This idea can be used to perform random walks on entropy vectors

and thereby MCMC methods for entropy optimization
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Maximizing the Ingleton Bound via MCMC

I = hij + hik + hil + hjk + hjl − hkl − hijk − hijl − hi − hj

0 500 1000 1500 2000 2500 3000 3500 4000
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025
Ingleton violation index vs. MCMC iteration, θ = 50,000, N = 2

vi
ol

at
io

n 
in

de
x

iteration

Figure 1: I < 0 is the Ingleton bound. Maximizing it with T = 100

and N = 2 using Monte Carlo Markov chain simulation achieved

.025. The best prior Ingleton-bound violating instance was .0072.
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Optimizing Information Flow in Networks

The same optimization can be done in networks, provided we respect the

network topology.

G1, P1

G2, P2

G3, P3

G3 ⊇ G1 ∩ G2 , P3 ⊆ P1 ∩ P2

• For example, the sum rate can be optimized in a distributed fashion

• Each edge randomly changes its partition based on information

received by the sinks
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Example - The Vamos Network

abcd

ab
w

x bc

ycd

z

aabcad

bcd
d

wants b wants a wants bc wants d wants c

• Constructed from the Vamos matroid—thesmallest

non-representable matroid—8 elements and U(2, 4) and F7 minors

• Maximum rate unknown; known to be less than 60
11
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• Dougherty et al give a six-dimensional linear vector solution with

capacity 5.

• However, using an MCMC method, we have been able to find a

nonlinear binary solution with capacity 5 (here the search space has

size 1012)

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Vamos capacity vs. MCMC iteration

su
m

 r
at

e

iteration
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Non-Pappus Matroid and Network

Figure 2: Another example of a nonrepresentable matroid.

The capacity of the corresponding network is unknown.
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scalar nonlinear search − alphabet size = 2

Figure 3: Nonlinear code N = 2, C = 0.6667.
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Figure 4: Nonlinear code N = 3, C = 0.8228.
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Figure 5: Linear code N = 2, C = 0.6667.
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Figure 6: Linear code N = 3, C = 0.6667.
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The Group PGL(2, p)

(2,3) (1,3)(2,4) (1,4) (1,2)(3,4)

(1,2,4,3)

1

(1,4)(2,3)

(1,3,4,2)

(1,2,4,3) (1
,2,

5,4
)

(1,5,2,3)(1,3,2,5)

(1,2)(3,5)

(1,2,5,4)

(1,3,5,2,4) (1,4,2,5,3)

(1,2,3,4,5) (1,5,4,3,2)

(1,5,3,4)

(1,4,3,5)

(2,4,5,3)

(2,3,5,4)
1

1

(1,5) (1,4)(2,5) (2,4)

(1,4,5,2)

(1,5)(2,4)

(3,4,5) (3,5,4)

1

(1,2)(3,5)

(1,3)(4,5)(2,5)(3,4)

(1,5,)(2,4)(1,4)(2,3)

(1,2)(4,5)

(1,2)(3,4) (1,2)(4,5)

$G_1$

$G_4$$G_3$

$G_2$

(1
,4,

5,2
)(1,3,4,2)

• The groups based on partitions are somewhat unstructured.

• We have found the smallest Ingleton-violating group to be the

projective linear group PGL(2, 5) with 120 elements

• Its generalizations, PGL(2, p), for p ≥ 5, all violate Ingleton, as does

the general linear group GL(2, p). These can be used to construct

codes stronger than linear ones.
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Entropy Vectors for Continuous Random Variables

Let Xi ∈ Rm, i = 1, . . . , n be vector-valued continuous random variables.

The normalized entropy is now defined as

hS =
1

m
H(Xi, i ∈ S),

and the space of normalized entropic vectors denoted by Γ̄∗
c,n.

Theorem 5 (Chan) Let
X

α⊂{1,...,n}

kαhα ≥ 0,

be an inequality for continuous random variables. Then

X

α⊂{1,...,n}

kαhα +
nX

i=1

ri(hi,ic − hic) ≥ 0,

for any ri ≥ 0 is an inequality for discrete random variables. Conversely

any inequality for discrete random variables must be of this form.
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Example

This implies that it is sufficient (and perhaps simpler) to study

continuous random variables.

For example, take n = 2. The only inequality in the continuous case is

h1 + h2 − h12 ≥ 0.

Thus, the inequalities for the discrete case are

h1 + h2 − h12 + r1(h12 − h2) + r2(h12 − h1) ≥ 0,

for any r1, r2 ≥ 0. For example:

r1 = 1, r2 = 0 : h1 ≥ 0

r1 = 0, r2 = 1 : h2 ≥ 0

r1 = 1, r2 → ∞ h12 ≥ h1

r1 → ∞, r2 = 1 h12 ≥ h2
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Gaussan Random Variables

The most obvious class of continuous random variables to consider are

Gaussians.

In this case, we start with a nm × nm positive definite covariance matrix

R. Let RS be the principal minor determined by the rows and columns

in set S. Then we have

hS =
1

m
log detRS .

Thus, the study of entropy leads us to the study of determinant

inequalities. This is a subject with a long history.
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Determinantal Inequalities

• Hadamard Inequality

detR11detR22 ≥ det

2

4
R11 R12

R21 R22

3

5 .

• Koteljanskii Inequality

detRαdetRβ ≥ detRα∪βdetRα∩β .

There are perhaps 3 reasons why looking at Gaussians may be fruitful.

44



'

&

$

%

Reason 1: They Work for n = 2, 3

Let Ωn denote the space of entropic vectors generated by vector-valued

Gaussian random variables.

Theorem 6

Ω̄∗
2 = Γ̄∗

c,2.

Theorem 7 For n = 3, the closure of the cone generated by

vector-valued Gaussian entropic vectors is Γ̄∗
c,3.

Theorem 8 For n = 3, the closure of the convex cone generated by

scalar-valued Gaussian entropic vectors is Γ̄∗
c,3.
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Reason 2: They Violate Ingleton

Linear codes over a finite field (or codes induced by finite Abelian

groups) satisfy the so-called Ingleton bound:

hij + hik + hil + hjk + hjl ≥ hijk + hijl + hkl + hi + hj .

It is known that there exist entropy vectors that violate the Ingleton

bound, though in the discrete case this is not easy to do (one needs

nonlinear codes or non-Abelian groups).

However, the Ingleton bound is easy to violate with Gaussians:

R =

2

6
6
6
6
6
4

1 1
4

1
2

1
2

1
4

1 1
2

1
2

1
2

1
2

1 0

1
2

1
2

0 1

3

7
7
7
7
7
5

Just check! (It is also known that Gaussians can achieve several

non-Shannon inequalities.)
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Reason 3: There is Hope for Characterizing Ω̄∗

n

A 3 × 3 symmetric matrix has 6 parameters and 7 principal minors.

Thus, one may expect that they satisfy some equation. Very recently,

Holtz and Sturmfels (2007) have shown that the principal minors

p1, p2, p3, p12, p23, p31, p123 satisfy

(p123−p1p23−p2p31−p3p12+2p1p2p3)
2 = 4(p1p2−p12)(p2p3−p23)(p3p1−p31).

And they recognized this as Cayley’s 2 × 2 × 2 hyperdeterminant.

What is going on?
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In general, an n× n symmetric matrix has n(n+1)
2

parameters and 2n = 1

principal minors. Given the pi, the diagonals of the matrix are fixed.

Given the pairwise minors pij the off-diagonals are fixed, up to a sign.

For example for n = 3:

R =

2

6
6
4

p1 ±√
p1p2 − p12 ±√

p1p3 − p13

±√
p1p2 − p12 p2 ±√

p2p3 − p23

±√
p1p3 − p13 ±√

p2p3 − p23 p3

3

7
7
5

.

In fact, it is easy to see that out of the eight possible sign combinations,

only two give different values for p123. Holtz and Sturmfels showed that

these two different values satisfy a quadratic equation (which is the

hyperdeterminant).

(One can use this general observation to determine whether 2n
− 1 given

numbers can be the principal minors of an n × n symmetric matrix.)
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Cayley’s Hyperdeterminant

• The standard determinant can be obtained by looking at the

bilinear form,
X

i,j

αijxiyj ,

and asking whether it has a nonzero stationary point. Taking

derivatives with respect to the xi, yj shows that this happens when

the determinant of the matrix defined by αij vanishes.

• If we instead consider the multi-linear form
X

i1,...,im

αi1...imxi1 . . . xim ,

the condition for having a nonzero stationary point is given by

setting the hyperdeterminant of αij equal to zero.
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For example for n = 3, this is equivalent to the condition that the

following 6 nonlinear equations have nonzero solutions

x0, x1, y0, y1, z0, z1:

x0y0 + p1x1y0 + p2x0y1 + p12x1y1 = 0

p3x0y0 + p31x1y0 + p23x0y1 + p123x1y1 = 0

y0z0 + p2y1z0 + p3y0z1 + p23y1z1 = 0

p1y0z0 + p12y1z0 + p31y0z1 + p123y1z1 = 0

z0x0 + p3z1x0 + p1z0x1 + p31z1x1 = 0

p2z0x0 + p23z1x0 + p12z0x1 + p123z1x1 = 0

For n > 3 things get increasingly more complicated. (The 2 × 2 × 2 × 2

hyperdeterminant was only first computed last year; it is a polynomial of

degree 24 in 16 variables and has nearly 3 million coefficients.)
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The connection to minors of matrices can be obtained by starting with

the multilinear form

det

0

B
B
@

2

6
6
4

x0

y0

z0

3

7
7
5

+

2

6
6
4

x1

y1

z1

3

7
7
5

A

1

C
C
A

,

and noting that it is equal to
X

i,j,k

xiyjpijk.

Taking derivatives from the above determinantal expression, it is easy to

show that a nonzero stationary point exists. The idea can also be

generalized to n > 3.
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n = 4

Define gijk = pijk − pipjk − pjpki − pkpij + 2pipjpk.

Theorem 9 The 15 principal minors of a 4 × 4 symmetric matrix

satisfy the 5 equations

g
2
123 = 4(p1p2 − p12)(p2p3 − p23)(p3p1 − p31)

g
2
124 = 4(p1p2 − p12)(p2p4 − p24)(p4p1 − p41)

g
2
134 = 4(p1p3 − p13)(p3p4 − p34)(p4p1 − p41)

g123g124g134 = 4(p1p2 − p12)(p1p3 − p13)(p1p4 − p14)g234

p1234 = poly(pi, pij , pijk).

If one could obtain the convex cone of the above algebraic variety, it

would yield an Ingleton-bound-violating inner bound to Ω̄∗
n.
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Entropy and Matroids

• A (poly)matroid is a set of objects along with a rank function that

satisfies submodularity

• Entropy satisfies submodularity and therefore defines a polymatroid

H(A ∪ B) + H(A ∩ B) ≤ H(A) + H(B)

• However, not all matroids are entropic

• A matroid is called representable if it can be represented by a

collection of vectors over some (finite) field

• All representable matroids are entropic, but not all entropic

matroids are representable

• When a matroid is representable, the corresponding network

problem has an optimal solution which is a linear network code

(over the field which represents the matroid)
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The Fano Matroid

a

b c

d e

f

g

The Fano matroid has a representation only over GF (2)

A7 =

a b c d e f g
2

6
6
4

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

3

7
7
5
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The Fano Network

a

b c

d e

f

g

a b c

d f

e

g

wants c wants b wants a

• The sources are a, b, c and the sinks require c, b, a, respectively

• Links are unit capacity

• What is the maximum rate?
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The Fano Network Solution

a

b c

d e

f

g

a b c

d f

e

g

wants c wants b wants a

d = a + b , f = b + c , e = d + f = a + c , g = d + c = a + b + c

• Therefore the capacity is 3

• The network only has a solution on GF (2)
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The Non-Fano Matroid

a

b c

d e

f

g

The Non-Fano matroid has a representation over every field except

GF (2)

B7 =

a b c d e f g
2

6
6
4

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

3

7
7
5
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The Non-Fano Network

a

b c

d e

f

g

a b c

wants c wants b wants a

d g f

e

• The sources are a, b, c and the sinks require c, b, a, respectively

• Links are unit capacity

• What is the maximum rate?
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The Non-Fano Network Solution

a

b c

d e

f

g

a b c

wants c wants b wants a

d g f

e

d = a + b , e = a + c , f = b + c , g = a + b + c

• Therefore the capacity is 4

• The network only has a solution except on GF (2)
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A Network with No Linear Solution

wants c wants b wants a

a b c

d

e

f

g

h k j

i

wants awants bwants c

• This network has no linear coding solution with capacity 7

• The linear network coding capacity can be shown to be 70
11

< 7
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Capacity is 7

wants c wants b wants a

a b c

d

e

f

g

h k j

i

wants awants bwants c

• A non-Abelian solution can be given

• Alternatively, view a, b, c, d, e, f, g on the LHS as elements of GF (2)n

and a, b, c, h, i, j, k on the RHS as elements of GF (2n + 1), such that

d = a ⊕ b , f = b ⊕ c , e = d ⊕ f = a ⊕ c , g = d ⊕ c = a ⊕ b ⊕ c

h = a + b , i = a + c , j = b + c , k = a + b + c

• The resulting capacity is 7 n
log(2n+1)

≈ 7(1 − 1
n
2−n)
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Matroid Representations

• Unfortunately, determining whether a general matroid is

representable is a classical open problem in matroid theory

• However, the question of whether a matroid is binary representable

has a relatively simple answer

– the matroid must have no 4-element minor such that all pairs are

independent and all triples dependent—see matrix below
2

4
1 0 1 ?

0 1 1 ?

3

5

Question: Is it possible to decompose an arbitrary network into two

components: a binary representable component, and a component

involving U(2, 4) minors (trivially representable in any other field),

represent each component and then somehow “glue” the solutions

together?
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Binary Matroids

Theorem 10 (Tutte 1958) A matroid is binary representable iff it has

no U(2, 4) minor.

Minors of a matroid are obtained by deletion and contraction of elements

in the ground set.
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Ternary and Quaternary Matroids

Theorem 11 (Reid 1971;Bixby 1979;Seymour 1979) A matroid is

ternary representable iff it has no U(2, 5), U(3, 5), F7 or F∗
7 minors.

Theorem 12 (Geelen, Gerards, Kapoor 1997) A matroid is

quaternary representable iff it has no U(2, 6), U(4, 6), F−
7 , (F−

7 )∗, P6,

P8 or P ′′
8 minors.
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Binary Entropic Vectors

• For random variables deletion corresponds marginalization and

contraction corresponds to conditioning

Theorem 13 A vector in R2n−1 is the entropic vector of n

linearly-related binary random variables iff

1. it has integer entries

2. h(XS) ≤ |S|

3. it satisfies submodularity

4. for every i, j, k, l ∈ {1, 2, . . . n} and every

S ∈ {1, 2, . . . n} − {i, j, k, l}, the 15-dimensional entropy vector

corresponding to {Xi, Xj , Xk, Xl|XS} not be U(2, 4)
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The Convex Cone of Binary Entropic Vectors

In order to solve general network problems over the binary field, we need

to know the convex cone of binary entropic vectors

Theorem 14 A vector in R2n−1 is in the convex cone of the entropic

vectors of n linearly-related scalar binary random variables iff

1. it is in the cone of matroids, M

2. for every i, j, k, l ∈ {1, 2, . . . n} and every

S ∈ {1, 2, . . . n} − {i, j, k, l}, the 15-dimensional entropy vector

corresponding to {Xi, Xj , Xk, Xl|XS} be in the convex cone of the

entropic vectors of four binary random variables

The convex cone of the entropic vectors of four binary random variables

is given by the Ingleton inequality and 5 other types of inequalities.
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The Capacity of Scalar Binary Linear Networks

We call a scalar binary linear network, one in which nodes either route

packets, combine them via XORs or time-share between these two.

Theorem 15 The problem of determining the capacity of an acyclic,

memoryless wired network using only scalar binary linear codes can be

reduced to

max

mX

i=1

αi (h(Xi) + h(Si) − h(Xi, Si)) ,

subject to h ∈ M and

• h(S1, . . . , Sm) =
Pm

i=1 h(Si), for sources

• h(Xout,XIn) − h(XIn) = 0, for topological constraints

• h(Xi) ≤ Ci, for channel constraints

• the entropy vector for {Xi, Xj , Xk, Xl|XS},
S ∈ {1, 2, . . . n} − {i, j, k, l} lies in the convex cone of the entropic

vectors of four binary random variables
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Remarks

• The above problem is a linear program

• One problem is that the cone M is not known

• If we move towards vector-valued binary random variables, then the

cone M is replaced by the polymatroidal cone, Γn

– The problem here is that the characterization of representable

vector-valued binary matroids is not know

– The uniform matroid U(2, 4) is, for example, vector binary

representable
2

6
6
6
6
6
6
6
6
4

1 0

0 1

0 0

0 0
| {z }

a

0 0

0 0

1 0

0 1
| {z }

b

1 0

0 1

1 0

0 1
| {z }

c

1 0

0 1

0 1

1 1
| {z }

d

3

7
7
7
7
7
7
7
7
5

68



'

&

$

%

• In general, the complexity of the linear program is exponential:

– there are 2n − 1 variables

– there are n +
“

n

2
”

2n−2 submodular inequalities

– there are
“

n

4
”

2n−4 minors to consider

• However, if we define

r = max(# of sources +2, maximum fan-in +1),

then

– there are only nr variables

– there are only nr minors to consider

– there could be significantly fewer submodular inequalities to

consider
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Remarks

Conclusion:

• If the cone of matroids, M, can be determined then finding optimal

linear scalar codes over the binary, ternary and quaternary fields

reduces to linear programming

– when the number of sources and the fan-in of the network is

small, the linear program is computationally tractable

• If the condition for vector binary representability can be established,

then M can be replaced by Γn and we obtain a linear programming

solution for finding optimal linear vector codes

The above can be done with reasonable complexity if the alphabet size,

or T and N are small.
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Conclusion

• Showed that a large class of network information theory problems

can be cast as convex optimization problems over the convex set of

entropy vectors.

• Thus, the problem is to characterize Γ̄∗
n, the space of entropy

vectors, which for n ≥ 4 is a fundamental open problem.

• Explored connections to matroids, non-Shannon inequalities,

quasi-uniform distributions, finite groups, determinantal inequalities

• Developed a distributed MCMC method (via random walks over

partitions) for the design of optimal linear and nonlinear codes over

small alphabet sizes

• Identified the smallest Ingleton-bound-violating group, PGL(2, 5)

• Reduced the design of optimal linear codes over GF (2), GF (3) and

GF (4) for arbitrary networks to linear programming. Problem is to

reduce the number of inequalities.
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