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Motivation I: Network information theory

Inequalities for entropies of sums have long played an important role in
information theory

The key example is the entropy power inequality (1948/59) and its many
variants. Shannon used it to explore the capacity of additive noise channels;
subsequently it has found particular use in network settings (e.g., broadcast
channel)

Such inequalities also play a key role in understanding the central limit the-
orem using entropy, and are thus of significant interest in probability theory

The focus of our talk is upper bounds rather than lower bounds on entropies
of sums; these are starting to find significant applications (e.g., the recent
work of Wu-Shamai-Verdú ’12 building on Etkin-Ordentlich ’09 on the degrees of
freedom of the interference channel)



Motivation II: The additive side of number theory

A lot of modern problems in number theory have to do with inherently
“additive structure”. E.g.:

• van der Corput’s theorem (1939):
The set of prime numbers contains infinitely many arithmetic progressions
(AP’s) of size 3

• Szemerédi’s theorem (1975):
Any set A of integers such that

lim sup

n!1
|A \ {1, . . . , n}|

n
> 0

contains an AP of length k, for all k � 2

• Green-Tao theorem (2008):
For each k � 2, the set of prime numbers contains an arithmetic pro-
gression of length k



Additive combinatorics

In all three results above, the problem is to count the number of occurrences
of a certain additive pattern in a given set

Classical “multiplicative” combinatorial results are insu�cient for these pur-
poses

The theory of additive combinatorics, and in particular the so-called sumset

inequalities, provides a set of very e↵ective tools

Sumset inequalities

• “sumset” A + B = {a + b : a 2 A, b 2 B}, where A,B are finite sets
in some group G

• “sumset inequality”: inequalities for the cardinalities of sumsets under a
variety of conditions

Simplest (trivial) example of a sumset inequality:
For any discrete subset A of an additive group (G,+) [WLOG think of
G = Z],

|A|  |A + A|  |A|2



Classical Sumset inequalities

Examples from the Plünnecke-Ruzsa (direct) theory

• Ruzsa triangle inequality

|A� C|  |A� B| · |B � C|
|B|

• Plünnecke-Ruzsa inequality: Although it is not true in general that

|A + B + C| · |B|  |A + B| · |B + C|,
it is true under appropriate conditions on the pair (A,B)

There is also the so-called Freiman or inverse theory, which deduces struc-
tural information about sets from the fact that their sumset is small. We
will not discuss this much today



Combinatorics and Entropy

Natural connection: For a finite set A,

H(Unif(A)) = log |A|
is the maximum entropy of any distribution supported on A

Applications of entropy in combinatorics

• Intersection families [Chung-Graham-Frankl-Shearer ’86]

• New proof of Bregman’s theorem, etc. [Radhakrishnan ’97-’03]

• Various counting problems [Kahn ’01, Friedgut-Kahn ’98, Brightwell-Tetali ’03,

Galvin-Tetali ’04, M.-Tetali ’07, Johnson-Kontoyiannis-M.’09]

Entropy in Additive Combinatorics?

Natural question: Can sumset inequalities be derived via entropy inequali-
ties? Even more interestingly, are sumset inequalities special cases of entropy
inequalities for sums of group-valued discrete random variables?

The answer to this question was developed by Ruzsa ’09, M.-Marcus-Tetali ’09,
and Tao ’10 in the discrete setting, and partially generalized to continuous
settings by Kontoyiannis-M.’12, ’13



Fact: Doubling and di↵erence constants (sets)

Let A and B be arbitrary subsets of the integers (or discrete subsets of any
commutative group).

A classical inequality in additive combinatorics

The di↵erence set A� B = {a� b : a 2 A, b 2 B}
Define the doubling constant of A by

�[A] =
|A + A|
|A|

and the di↵erence constant of A by

�[A] =
|A� A|
|A| .

Then �[A]
1
2  �[A]  �[A]2

May be rewritten as

1

2

⇥
log |A� A|� log |A|⇤  log |A + A|� log |A|  2

⇥
log |A� A|� log |A|⇤



Question: Doubling and di↵erence constants (RV’s)

Formal translation procedure

• Replace discrete sets by independent discrete random variables

• Replace the log-cardinality of a set by the discrete entropy function

Translation of the previous inequality

Let Y, Y 0 be i.i.d. discrete random variables. Define the doubling constant

of Y by
�+(Y ) = H(Y + Y 0

)�H(Y )

and the di↵erence constant of Y by

��(Y ) = H(Y � Y 0
)�H(Y )

where H(·) denotes the discrete entropy function. Then the entropy analog
of the doubling–di↵erence sumset inequality is

1

2

��(Y )  �+(Y )  2��(Y )

Is this true?



mile-marker

p
Motivation: Additive combinatorics, Network information theory

• Background: Entropy, submodularity, hypergraphs
PART I: Inequalities for Discrete Entropy and Cardinalities

• Entropy inequalities for sums and di↵erences

• Entropy and sumset cardinality inequalities for P-D functions

PART II: Inequalities for Continuous Entropy

•Why is the continuous case di↵erent?

• (Continuous) Entropy inequalities for sums and di↵erences



Entropy and Mutual Information

For random element X , entropy H(X) = H(p) = E[� log p(X)]

Here if X is discrete, p is the p.m.f of X , and H is denoted H
and if X is continuous, p is the p.d.f of X , and H is denoted h

Conditional entropy of X given Y is

H(X|Y ) =

X

y

pY (y)H(X|Y = y) , h(X|Y ) =

Z
h(X|Y = y)pY (y)dy

where the term in the integrand is the entropy of p(x|Y = y).

Mutual Information

• The mutual information

I(X ;Y ) = E


log

pX,Y (X, Y )

pX(X) pY (Y )

�

represents the information shared between X and Y ; it is non-negative,
and symmetric in X and Y

• One has
I(X ;Y ) = H(X)�H(X|Y ) = H(Y )�H(Y |X)



Three Useful Facts about Entropy

• Shannon’s Chain Rule:

H(X, Y ) = H(Y ) +H(X|Y )

• The conditional mutual information I(X ;Y |Z) represents the infor-
mation shared between X and Y given that Z is already known; since it
is non-negative and can be written as

I(X ;Y |Z) = H(X|Z)�H(X|Y, Z),
consequently H(X|Z) � H(X|Y, Z) (“conditioning reduces entropy”)

• Things that we can rely on only in the discrete case:

–H(X|Y ) � 0 and H(X) � 0

–H(X|Y ) = 0 if and only if X is a function of Y

Consequences: A plethora of entropy inequalities



Hypergraphs and fractional subadditivity

• [n] is the index set {1, 2, . . . , n}
• A collection C of subsets of [n] is a hypergraph, and the sets in C are hyperedges.
E.g.:

�{1, 2}, {1, 3}, {2, 3, 4} 

• For any index i in [n], define the degree of i in C as

r(i) = |{t 2 C : i 2 t}|
The hypergraph C is r-regular if each i has the same degree r

Remarks

• A set function g : 2

[n] ! R is submodular if

g(s [ t) + g(s \ t)  g(s) + g(t) for any s, t

• Lemma FSA: If a set function f is submodular, and f (�) = 0, then f is fractionally
subadditive, i.e., for any r-regular hypergraph C,

g([n])  1

r

X

s2C
g(s)

• Most general formulation with fractional coverings/packings and conditioning in M.-
Tetali ’10 (cf. Bondareva ’63, Shapley ’67-’71, Ollagnier-Pinchon ’82)



Key example: Entropy of joint distributions

Submodularity of joint entropy:

H(X, Y, Z) +H(X)  H(X, Y ) +H(X,Z)

Implications

We wish to consider various subsets of the random variables X1, . . . , Xn.
For any s 2 C, let Xs stand for the collection of random variables (Xi : i 2
s), with the indices taken in their increasing order.

• For any s, t ⇢ [n],

H(Xs[t) +H(Xs\t)  H(Xs) +H(Xt)

• (Shearer’s inequality) For any r-regular hypergraph on [n],

H(X[n])  1

r

X

s2C
H(Xs)

• These are nicely structured Shannon-type inequalities that may be of
use in the study of the entropic region
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Illustrative inequalities

The Inequalities

• Let Z1, . . . , Zn be independent discrete random variables taking values
in the abelian group G. For any r–regular hypergraph C on [n],

ENT : H(Z1 + · · · + Zn)  1

r

X

s2C
H

✓X

i2s
Zi

◆

• Let X1, . . . , Xn be finite subsets of the abelian group G. For any r–
regular hypergraph C on [n],

CARD : |X1 + · · · +Xn| 
Y

s2C

����
X

i2s
Xi

����

1
r

Remarks

• CARD implies trivially the known fact (e.g., Nathanson ’96) that |kA|1/k
is a non-increasing sequence

• CARD was conjectured by Gyarmati-Matolcsi-Ruzsa ’10 and proved indepen-
dently by Gyarmati-Matolcsi-Ruzsa ’08, Balister-Bollobás ’07, M.-Marcus-Tetali ’10

• ENT was proved by M.-Marcus-Tetali ’10



Relation between ENT and CARD

Let X1, . . . , Xn ⇢ G be finite sets,
and Z1, . . . , Zn be RVs supported on X1, . . . , Xn respy.

Note: For any s ⇢ [n], Z+
s :=

P
i2sZi is supported on X+

s :=

P
i2sXi

Remarks

•We can bound both the LHS and RHS of ENT:

H(Z+
[n])

(a)
 log

��X+
[n]

��

and
1

r

X

s2C
H
�
Z+
s
�  1

r

X

s2C
log

��X+
s
��

CARD says that these upper bounds themselves are ordered

• ENT would imply CARD immediately if:

1. (a) was an equality [i.e., if the distribution Z[n] on X1 ⇥ . . . ⇥ Xn

makes sum Z+
[n] uniformly distributed on its range], AND

2. ENT held [i.e., this distribution for Z[n] is a product distribution]

In general, this is not possible

Message: no immediate implication between ENT and CARD



Basic notions for a general new framework

• Compound sets: For subsets X1, . . . , Xk of some ambient space X ,
consider

f (X1, . . . , Xk) = {f (x1, . . . , xk) : x1 2 X1, . . . , xk 2 Xk}.
When the ambient space is a group, the only operation available is the
sum, and all compound sets are sumsets. When the ambient space is a
ring, one may consider compound sets built from polynomials.

• Partition-determined function: For what kind of functions f (with vari-
able number of arguments) can one relate the entropy/cardinality of com-
pound sets?

Idea: Key fact for sums was that for fixed a, the sum a+ b depends only
on b



Partition-determined functions

Let Xi be finite sets, and Xs =

Q
i2sXi for nonempty s ⇢ [n] (assume

that the indices ij are labeled in increasing order for clarity). Let

Q(X1, X2, . . . , Xn) =

G

� 6=s⇢[n]

Xs

For any s ⇢ [n], the projection function ⇡s : X[n] ! Xs is defined by
⇡s(x) = (xi1, . . . , xi|s|) where ij 2 s

Definitions

• f : Q(X1, . . . , Xn) ! Y is partition-determined if for all x, y 2 X[n],

f (⇡s(x)) = f (⇡s(y)) and f (⇡sc(x)) = f (⇡sc(y)) for any s ⇢ [n]

implies f (x) = f (y)

• f : Q(X1, . . . , Xn) ! Y is strongly partition-determined if for any
x 2 X[n] and for any s ⇢ [n], any two of the objects f (x), f (⇡s(x)) and
f (⇡sc(x)) determine the third



Partition-determined functions (II)

Let n = 5, and s = {1, 3, 5} ⇢ [5]

If x = (x1, x2, x3, x4, x5) 2 X[n] ⇢ Q(X1, . . . , Xn),
then xs = (x1, x3, x5) 2 Xs ⇢ Q(X1, . . . , Xn)

and xsc = ( x2, x4 ) 2 Xsc ⇢ Q(X1, . . . , Xn)

Reprising Definitions

• If f : Q(X1, . . . , Xn) ! Y is P-D, then f (x) is determined by f (xs)
and f (xsc)

• If f : Q(X1, . . . , Xn) ! Y is strongly P-D, then any two of the objects
f (x), f (xs) and f (xsc) determine the third

Running Examples

• Identity function (i.e., f (xs) = xs) is strongly P-D

• Sum function in an abelian group (i.e., f (xs) =
P

i2s xi) is strongly P-D



Submodularity for Strongly P-D Functions

Theorem: [Submodularity of Entropy for Strongly P-D

Functions]

Let Xi be finite sets, and f : Q(X1, . . . , Xn) ! Y be strongly P-D. Let
Z1, . . . , Zn (taking values in X1, . . . , Xn) be independent RVs. Then, writ-
ing fs = f (⇡s(Z1, . . . , Zn)),

GEN-ENT : H(fs[t) +H(fs\t)  H(fs) +H(ft)

for any nonempty subsets s and t of [n]

Corollary: For any r-regular hypergraph C on [n],

H(f[n])  1

r

X

s2C
H
�
fs
�



Submodularity for Sums

Corollary: [Submodularity of Entropy for Sums]

If Zi are independent discrete RVs taking values in an abelian group, and
Z+
s =

P
i2sZi, then g(s) = H(Z+

s ) is submodular. That is:

H(Z1 + Z2 + Z3) +H(Z1)  H(Z1 + Z2) +H(Z1 + Z3)

Corollary: For any r-regular hypergraph C on [n],

H(Z+
[n]) 

1

r

X

s2C
H(Z+

s )

Remarks

• The second statement follows from the first by Lemma FSA

• The first statement is implicit in Kăımanovich-Vershik ’83 as pointed out by
Tao ’09; both corollaries explicit and generalized to continuous settings in
M.’08



On the proof of GEN-ENT (I)

Lemma A: (“Data processing inequality”) The mutual information cannot
increase when one looks at functions of the random variables:

I(g(Z);Y )  I(Z;Y ).

Lemma B: If f is strongly partition-determined and Z1, . . . , Zn are indepen-
dent, then for disjoint sets s, t ⇢ [n],

I(fs[t; ft) = H(fs[t)�H(fs). (1)

Proof

Since conditioning reduces entropy,

H(fs[t)�H(fs) = H(fs[t)�H(fs|ft) [independence of Zi]

= H(fs[t)�H(fs[t|ft) [f strongly P-D]

= I(fs[t; ft)



On the proof of GEN-ENT (II)

Su�ces to prove the result for n = 3, i.e., we want to show

H(f{1,2}) +H(f{2,3}) � H(f{1,2,3})�H(f{2})

Now, using Lemma B,

H(f{1,2}) +H(f{2,3})�H(f{1,2,3})�H(f{2})
= H(f{1,2})�H(f{2})�

⇥
H(f{1,2,3})�H(f{2,3})

⇤

= I(f{1,2}; f{1})� I(f{1,2,3}; f{1})

But

I(f{1,2,3}; f{1})  I(f{1,2}, f{3} ; f{1}) [Lemma A]

= I(f{1,2}; f{1}) + I(f{3}; f{1}|f{1,2}) [“chain rule”]

= I(f{1,2}; f{1}) [independence]

Thus
I(f{1,2}; f{1}) � I(f{1,2,3}; f{1})

and the proof is complete



Half of the doubling–di↵erence inequality

Goal: If X,Z are i.i.d.,

H(X + Z)�H(X)  2[H(X � Z)�H(X)]

Proof

If X, Y, Z are independent random variables, then

H(X + Y + Z) +H(Y )  H(X + Y ) +H(Z + Y )

Since H(X + Z)  H(X + Y + Z),

H(X + Z) +H(Y )  H(X + Y ) +H(Z + Y )

Taking X,�Y and Z i.i.d.,

H(X + Z) +H(X)  2H(X � Z)

which is the required upper bound



Functional Submodularity

If X0 = F (X1) = G(X2) and X12 = R(X1, X2), then

H(X12) +H(X0)  H(X1) +H(X2)

Proof

By data processing for mutual information and entropy,

H(X1) +H(X2)�H(X12) � H(X1) +H(X2)�H(X1, X2)

= I(X1;X2)

� I(X0;X0)

= H(X0)

Note: Does not hold for di↵erential entropy h



The other half: discrete case

Goal: [Implicit in Ruzsa ’09, Tao–Vu ’06] If X, Y are i.i.d.,

H(X � Y )�H(X)  2[H(X + Y )�H(X)]

Proof

By functional submodularity,

H(X, Y, Z) +H(X � Z)  H(X � Y, Y � Z) +H(X,Z).

Rearranging and using independence,

H(X � Z)  H(X � Y, Y � Z)�H(Y )

Thus one obtains the Ruzsa triangle inequality:

H(X � Z)  H(X � Y ) +H(Y � Z)�H(Y ) [Ruzsa ’09, Tao–Vu ’06, Tao ’09]

Replacing Y by �Y and noting that H(W ) = H(�W ) for any W ,

H(X � Z) +H(Y )  H(X + Y ) +H(Y + Z)

Letting X,Z have the same distribution as Y gives

H(X � Y ) +H(X)  2H(X + Y ),

which is the desired result
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A Unified Setting

Let G be a Hausdor↵ topological group that is abelian and locally compact,
and � be a Haar measure on G. If µ ⌧ � is a probability measure on G,
the entropy of X ⇠ µ is defined by

h(X) = �
Z

dµ

d�
(x) log

dµ

d�
(x)�(dx)

Remarks

• In general, h(X) may or may not exist; if it does, it takes values in the
extended real line [�1,+1]

• If G is compact and � is the Haar (“uniform”) probability measure on G,
then h(X) = �D(µk�)  0 for every RV X

• Covers both the classical cases: G discrete with counting measure, and
G = Rn with Lebesgue measure



A Question and an Answer

Setup: Let Y and Y 0 be i.i.d. random variables (continuous, with density
f). As usual, the di↵erential entropy is h(Y ) = E[� log f (Y )]

Question

How di↵erent can h(Y + Y 0
) and h(Y � Y 0

) be?

First answer [Lapidoth–Pete ’08]

The entropies of the sum and di↵erence of two i.i.d. random variables can
di↵er by an arbitrarily large amount

Precise formulation: Given any M > 0, there exist i.i.d. random variables
Y, Y 0 of finite di↵erential entropy, such that

h(Y � Y 0
)� h(Y + Y 0

) > M (Ans. 1)



A Question and another Answer

Question

If Y and Y 0 are i.i.d. continuous random variables, how di↵erent can
h(Y + Y 0

) and h(Y � Y 0
) be?

Our answer [Kontoyiannis–M.’12]

The entropies of the sum and di↵erence of two i.i.d. random variables are
not too di↵erent

Precise formulation: For any two i.i.d. random variables Y, Y 0 with finite
di↵erential entropy:

1

2

 h(Y + Y 0
)� h(Y )

h(Y � Y 0
)� h(Y )

 2 (Ans. 2)



What do the two Answers tell us?

Together, they suggests that the natural quantities to consider are the dif-
ferences

�+ = h(Y + Y 0
)� h(Y ) and �� = h(Y � Y 0

)� h(Y )

Then (Ans. 1) states that the di↵erence �+ ��� can be arbitrarily large,
while (Ans. 2) asserts that the ratio �+/�� must always lie between 1

2 and
2

Why is this interesting?

• Seems rather intriguing in its own right

• Observe that �+ and �� are a�ne-invariant; so these facts are related
to the shape of the density

• This statement for discrete random variables (one half of which follows
from [Ruzsa ’09, Tao ’10], and the other half of which follows from [M.-

Marcus-Tetali ’12]) is the exact analogue of the inequality relating doubling
and di↵erence constants of sets in additive combinatorics

• This and possible extensions may be relevant for studies of “polarization”
phenomena and/or interference alignment in information theory



Half the proof

Want to show: If Y, Y 0 are i.i.d.,
h(Y + Y 0

)� h(Y )  2[h(Y � Y 0
)� h(Y )]

Proof: If Y, Y 0, Z are independent random variables, then the Submodularity
Lemma says

h(Y + Y 0
+ Z) + h(Z)  h(Y + Z) + h(Y 0

+ Z) [M. ’08]

Since h(Y + Y 0
)  h(Y + Y 0

+ Z),

h(Y + Y 0
) + h(Z)  h(Y + Z) + h(Y 0

+ Z) (2)

Taking now Y, Y 0 to be i.i.d. and Z to be an independent copy of �Y ,

h(Y + Y 0
) + h(Y )  2h(Y � Y 0

)

which is the required upper bound

Remark: The other half would follow similarly if we could prove the following
slight variant of (2):

h(Y�Y 0
) + h(Z)  h(Y + Z) + h(Y 0

+ Z)

This is the entropy analogue of the Ruzsa triangle inequality and is a bit
more intricate to prove



The Submodularity Lemma

Given independent G-valued RVs X1, X2, X3 with finite entropies,

h(X1 +X2 +X3) + h(X2)  h(X1 +X2) + h(X3 +X2)

Remarks

• For discrete groups, the Lemma is implicit in Kăımanovich-Vershik ’83, but was redis-
covered and significantly generalized by M.-Marcus-Tetali ’12 en route to proving some
conjectures of Ruzsa

• Discrete entropy is subadditive; trivially,

H(X1 +X2)  H(X1, X2)  H(X1) +H(X2)

This corresponds to putting X2 = 0 in discrete form of the Lemma

• Continuous entropy is not subadditive; it is easy to construct examples with

h(X1 +X2) > h(X1) + h(X2)

Note that putting X2 = 0 in the Lemma is no help since h(const.) = �1



Proof of Submodularity Lemma

Lemma A: (“Data processing inequality”) The mutual information cannot
increase when one looks at functions of the random variables:

I(g(Z);Y )  I(Z;Y ).

Lemma B: If Xi are independent RVs, then

I(X1 +X2;X1) = H(X1 +X2)�H(X2).

Proof of Lemma B

Since conditioning reduces entropy,
h(X1 +X2)� h(X2) = h(X1 +X2)� h(X2|X1) [independence of Xi]

= h(X1 +X2)� h(X1 +X2|X1) [translation-invariance]

= I(X1 +X2;X1)

Proof of Submodularity Lemma

I(X1 +X2 +X3;X1)
(a)
 I(X1 +X2, X3;X1)

(b)
= I(X1 +X2;X1)

where (a) follows from Lemma A and (b) follows from independence

By Lemma B, this is the same as

h(X1 +X2 +X3) + h(X2)  h(X1 +X2) + h(X2 +X3)



Aside: Applications in Convex Geometry

Continuous Plünnecke-Ruzsa inequality: Let A and B1, . . . , Bn be convex
bodies in Rd, such that for each i,

����A + Bi

����

1
d

 ci|A|1d.

Then ����A +

X

i2[n]
Bi

����

1
d


 nY

i=1

ci

�
|A|1d

The proof combines the Submodularity Lemma with certain reverse Hölder-
type inequalities developed in [Bobkov-M.’12]

Reverse Entropy Power Inequality: The Submodularity Lemma is one in-
gredient (along with a deep theorem of V. Milman on the existence of
“M -ellipsoids”) used in Bobkov-M.’11, ’12 to prove a reverse entropy power
inequality for convex measures (generalizing the reverse Brunn-Minkowski
inequality)

mile-marker



p
Motivation: Additive combinatorics, Network information theory

p
Background: Entropy, submodularity, hypergraphs

PART I: Inequalities for Discrete Entropy and Cardinalities

• Entropy inequalities for sums and di↵erences

• Entropy and sumset cardinality inequalities for P-D functions

PART II: Inequalities for Continuous Entropy

•Why is the continuous case di↵erent?

• (Continuous) Entropy inequalities for sums and di↵erences



Continuous analogue of Ruzsa triangle inequality

Goal: If X, Y, Z are independent,

h(X � Z)  h(X � Y ) + h(Y � Z)� h(Y )

Proof

Note RHS � h(X � Y, Y � Z) + h(X,Z)� h(X, Y, Z)

But h(X, Y, Z) = h(X � Y, Y � Z,X)

= h(X � Y, Y � Z) + h(X|X � Y, Y � Z).
so

RHS � h(X,Z)� h(X|X � Y, Y � Z)

= h(X)� h(X|X � Y, Y � Z) + h(Z)

= I(X ;X � Y, Y � Z) + h(Z)

� I(X ;X � Z) + h(Z)

= h(X � Z)� h(X � Z|X) + h(Z)

= h(X � Z)� h(�Z|X) + h(Z)

= h(X � Z)



Non-Gaussianity

For X ⇠ f in Rn, its relative entropy from Gaussianity is

D(X) = D(f ) := D(fkfG
),

where fG is the Gaussian with the same mean and covar. matrix as X

Observe:

• For any density f , its non-Gaussianity D(f ) = h(fG
)� h(f )

Proof: Gaussian density is exponential in first two moments

• Thus Gaussian is MaxEnt: N(0, �2
) has maximum entropy among all

densities on R with variance  �2

Proof: D(f ) � 0



Towards the Entropic CLT

Two observations . . .

• Gaussian is MaxEnt: N(0, �2
) has maximum entropy among all densities

on R with variance  �2

• Let Xi be i.i.d. with EX1 = 0 and EX2
1 = �2.

For the CLT, we are interested in SM :=

1p
M

MX

i=1

Xi

The CLT scaling preserves variance

suggest . . .

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics, in the sense that h(SM)monotonically increases inM until
it hits the maximum entropy possible (namely, the entropy of the Gaussian)?



Entropic Central Limit Theorem

If D(SM) < 1 for some M , then as M ! 1,

D(SM) # 0 or equivalently, h(SM) " h(N(0, �2
))

Convergence shown by Barron ’86; monotonicity shown by Artstein-Ball-Barthe-

Naor ’04 with simple proof by Barron–M.’07

Remarks

• The proof in Barron–M.’07 of a general inequality that implies monotonicity is a direct
consequence of 3 ingredients:

– An (almost) standard reduction to statements about Fisher information of sums

– An integration-by-parts trick to reduce the desired Fisher information inequality to
a variance inequality

– A proof of the variance inequality, which generalizes Hoe↵ding’s variance bounds for
U -statistics

• Question: Can such a “2nd law” interpretation be given to other limit theorems in
probability?
Answer: Yes, but it is harder to do so, and the theory is incomplete

E.g.: Partial results in the Compound Poisson case by [Johnson-Kontoyiannis-M.’09,
Barbour-Johnson-Kontoyiannis-M.’10]



Original Entropy Power Inequality

If X1 and X2 are independent RVs,

e2h(X1+X2) � e2h(X1)
+ e2h(X2) [Shannon ’48, Stam ’59]

with equality if and only if both X1 and X2 are Gaussian

Remarks

• Implies the Gaussian logarithmic Sobolev inequality in 3 lines

• Implies Heisenberg’s uncertainty principle (stated using Fourier trans-
forms for unit vectors in L2(Rn

))

• Since h(aX) = h(X) + log |a|, implies for i.i.d. Xi,

h

✓
X1 +X2p

2

◆
� h(X1)

Thus we have monotonicity for doubling sample size: h(S2n) � h(Sn)



An elementary observation

If Xi are independent,

h(X1) + h(X2) = h(X1, X2)

= h

✓
X1 +X2p

2

,
X1 �X2p

2

◆

 h

✓
X1 +X2p

2

◆
+ h

✓
X1 �X2p

2

◆

When X1 and X2 are IID. . .

• If X1 has a symmetric (even) density, this immediately yields h(S2) �
h(S1) in the CLT

• If h(X1 �X2) < h(X1 +X2)� C, then

h(Z) � h

✓
X1 +X2p

2

◆
> h(X1) +

C

2

so that D(X1) >
C
2

• Thus any distribution of X for which |h(X1�X2)�h(X1+X2)| is large
must be far from Gaussianity



What does small doubling mean?

Let X be a R-valued RV with finite (continuous) entropy and variance �2.
The EPI implies h(X+X 0

)�h(X) � 1
2 log 2, with equality i↵ X is Gaussian

A (Conditional) Freiman theorem in Rn

If X has finite Poincaré constant R = R(X), and

h(X +X 0
)� h(X)  1

2

log 2 + C, (3)

then X is approximately Gaussian in the sense that

D(X) 
⇣
2R

�2
+ 1

⌘
C

Remarks

• Follows from a convergence rate result in the entropic CLT obtained independently by
[Johnson-Barron ’04] and [Artstein-Ball-Barthe-Naor ’04]

• A construction of [Bobkov-Chistyakov-Götze ’11] implies that in general such a result
does not hold

• A su�cient condition for small doubling is log-concavity: in this case, h(X + X 0
) 

h(X) + log 2 and h(X �X 0
)  h(X) + 1



• There are still structural conclusions to be drawn just from (3). . .



Summary

• Entropy of strongly partition-determined functions is submodular

• Recover and generalize numerous sumset and entropy inequalities in abelian
and nonabelian groups (and resolve several conjectures of Ruzsa ’09, Gyarmati-
Matolcsi-Ruzsa ’10)

• Continuous analogues have non-trivial consequences in convex geometry
and probability

• Broader message: Entropy inequalities are promising tools:
– in information theory, for communications applications – in additive
combinatorics, as an e�cient way of proving sumset inequalities
– as a source of additional intuition (e.g., how discrete and continuous
cases di↵er)

Thank you for your attention!

� � � � �
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What changes for non-abelian groups?

• If A,B,C are finite subsets of a non-abelian group (with multiplication
as the group operation), then:

ABC need not have any relation with AC

(OR)

the (naive) product function f (xs) = xi1xi2 . . . xik, where i1 < i2 <
. . . < ik are the elements of s, is not P-D

• However, the additive combinatorics of non-abelian groups generally aims
to use the fact that even though ABC need not have any relation with
AC, ABC may be related to the sets AbC that one gets by running
over b 2 B

• Question: Can any of the preceding technology be applied to non-abelian
groups?



CARD for non-abelian groups

Theorem 3: Let Xi be subsets of a non-abelian group, and define

A(i, j) = max{|Xixi+1 . . . xj�1Xj| : xi+1 2 Xi+1, . . . , xj�1 2 Xj�1}
for all 1  i < j  n. Then, for n � 2,

|X1X2 . . . Xn|n�1 
Y

1i<jn

A(i, j)

Proof ideas

• Non-trivial choice of P-D function: If s is contiguous,
of form {k, k + 1, . . . , l}, then fs(x) = xkxk+1 . . . xl;
otherwise fs(x) = ⇡s(x)

• New inequality for joint entropy: Let Zi be random variables, and
define for all i < j, Z(i,j) = {Zt : i < t < j}. Then

(n� 1)H(Z1, . . . , Zn) 
nX

i=1

X

j>i

H(Zi, Zj | Z(i,j))

• Resolves partially a conjecture of Ruzsa ’09, and gives hints about the
general conjecture



Cardinality inequalities of Plünnecke-Ruzsa type

Let A,B1, . . . , Bn be finite subsets of an abelian group, and assume
|A + B+

s |  Ks|A|. Let C be any r-regular hypergraph on [n].

1. Conjecture: There exists a nonempty set A0 ⇢ A such that

|A0
+ B+

[n]|  (

Q
s2C Ks)

1/r|A0|
2. Theorem 4: Set c := |C|/r. For any D ✓ B+

[n],

|A +D|  (

Q
s2C Ks)

1/|C||D|1�1/c · |A|
Remarks

• (1) was proved for Cm (all m-sets) by Gyarmati, Matolcsi and Ruzsa ’08. Spe-
cializing to C1 (singletons) and n = 2 gives the original Plünnecke-Ruzsa
inequality for di↵erent summands:

|A0
+ B1 + B2| 

✓|A + B1|
|A|

◆✓|A + B2|
|A|

◆
|A0| [Ruzsa ’89]

• (2) was proved in M.-Marcus-Tetali ’10, with special cases proved indepen-
dently [C1 (singletons) by Gyarmati-Matolcsi-Ruzsa ’10, Balister-Bollobás ’07 and
Cn�1 (leave-one-out sets) by Gyarmati-Matolcsi-Ruzsa ’08]



Entropic inequalities of Plünnecke-Ruzsa type

Theorem 5: Let Z0, Z1, . . . , Zn be independent discrete RVs taking values
in the abelian group G. Define the nonnegative constants �(s) for each
s 2 C by H(Z0 + Z+

s ) = H(Z0) + �(s). Then, with c := |C|/r,
H(Z0 + Z+

[n])  H(Z0) +
�
1� 1

c

�
H(Z+

[n]) +
1
|C|
P

s2C �(s)

H(Z0 + Z+
[n])  H(Z0) +

1
r

P
s2C �(s)

Remarks

• These are the entropy analogues of the Conjecture and Theorem 4, but
they are of the same form. On the other hand, there is an essential
di↵erence between the Conjecture and Theorem 4: the Conjecture can
only be true for some A0 ⇢ A (one hopes not too small)

• Neither of these bounds seems a priori better than the other



Some reflections

• Q: Why can A0 not be taken to be A in the original Plünnecke-Ruzsa
inequality (and hence in the Conjecture)?

Ans: Putting A0
= A yields

|A + B1 + B2| · |A|  |A + B1| · |A + B2| (4)

This is FALSE since log cardinality of sumsets is not submodular [Ruzsa ’09],
although from CARD, we know it is fractionally subadditive

• Q: Why can something be said with A0 a nonempty subset of A?

Ans: Recent work of Petridis ’11 makes it clear that the heart of the
Plünnecke-Ruzsa inequality is that although (4) is not true,

|A0
+ B1 + B2| · |A0|  |A0

+ B1| · |A0
+ B2|

holds for some subset A0 of A

• The entropy of sums is submodular; so we have nicer entropic analogues



Entropic Central Limit Theorem?

Two observations . . .

• Gaussian is MaxEnt: N(0, �2
) has maximum entropy among all densities

on R with variance  �2

• Let Xi be i.i.d. with EX1 = 0 and EX2
1 = �2.

For the CLT, we are interested in SM :=

1p
M

MX

i=1

Xi

The CLT scaling preserves variance

suggest . . .

Question: Is it possible that the CLT may be interpreted like the 2nd law of
thermodynamics?

Specifically: Is it true that h(SM) monotonically increases in M until it hits
the maximum entropy possible (namely, the entropy of the Gaussian)?



The Entropic Central Limit Theorem

If D(SM) < 1 for some M , then as M ! 1,

D(SM) # 0 or equivalently, h(SM) " h(N(0, �2
))

Remarks

• Convergence shown by Barron ’86

•Monotonicity shown by Artstein-Ball-Barthe-Naor ’04 with simple proofs by
Barron–M. ’06-’07, Tulino–Verdú ’06

•Monotonicity in n indicates that the entropy is a natural measure for
CLT convergence (cf. second law of thermodynamics)



Reverse Brunn-Minkowski inequality

Given two convex bodies A and B in Rd, one can find an a�ne volume-
preserving map u : Rd ! Rd (i.e., u 2 SLd(R)) such that with some
absolute constant C,

�� eA + B
��1/d  C

⇣
|A|1/d + |B|1/d

⌘

where eA = u(A)

Remarks

• Note that by the Brunn-Minkowski (BM) inequality, we always have
�� eA + B

��1/d � |A|1/d + |B|1/d

• The Reverse BM Inequality was proved by [Milman ’86], with other proofs in
[Milman ’88, Pisier ’89]; all proofs use deep techniques from convex geometry
and functional analysis

• Is there an entropic form of the Reverse BM Inequality, for random vec-
tors, under some “convexity” assumption?



Reverse entropy power inequality

Theorem 8: If X and Y are independent Rd-valued RVs, and have log-
concave densities, then for some a�ne entropy-preserving map u : Rd ! Rd

(i.e., u 2 SLd(R)),

N � eX + Y
�  C (N (X) +N (Y )) [Bobkov-M.’10]

where eX = u(X) and C is an absolute constant

Remarks

• Entropy power inequality (EPI): For any two independent random vec-
tors X and Y in Rn,

N (X + Y ) � N (X) +N (Y ) [Shannon ’48, Stam ’59]

If X ⇠Unif(A) for a convex body A ⇢ Rn, N (X) = |A|2/n. Even
though this is not an exact correspondence, BM and EPI are closely
related

• Reverse BM inequality can be recovered as a special case of Theorem 8

• Theorem 8 can be generalized to the larger class of “convex measures”


