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Definition (Matroid I)

(N, r) is a matroid, with a ground set N and
rank function r: [ — {0,1,...}, I C N, if

r(0)=0

r(ly<r(J) forICJCN
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The matroid is linear over a field F if a matrix A exists such that
r(1) = rankp(A;) for all I C N.

going back to 1936, today > 10000 papers
several textbooks (Welsh, Recski, Oxley)

crossroad of combinatorics, algebra and finite geometry
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the matroid admits a number of equivalent ‘crypto’ definitions
N={1,2,3,4,5,6}
100111
A=10 1 0 1 0 1
001011

record all sets /| C N such that A; has independent columns
call them independent, eg. {1,2,3}, {1}, ..., {4,5,6}.
collect basic properties of the independent sets

Definition (Matroid I1)

(N,Z) is a matroid, with a ground set N and
family of Z C 2N of independent sets if

hel
I CJCNandJeZimpliesl €T
for K C N all I € K maximal in Z have the same cardinality.
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‘Thm’: ‘one-to-one correspondence’ between (N,Z) and (N, r)

maximal independent set is a base B

sets in 2V \ 7 are dependent

minimal dependent set is a circuit C
FCNisaflatif r(F) < r(FUi)forallie N\ F

four more axiom systems

many theorems on one-to-one correspondences
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5 r(1) ... affine dimension of /
B base ... three points not collinear
1 ® 2 C circuit ... {1,2,4}, {1,4,5,6}, etc.
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Entropy and matrices
1
0
1
0

A and B have the same row spaces (codes) over GF(2),

o = O
= O O
O = =
= O
O O = =
_ = O O
O = = O
—_ o o M
_ O = O
Q 0 T W

hence induce the same matroid

the matroid is graphical because B is an incidence matrix of Ky

a 1 c

B base ... edges of a spanning tree
2| 4 5 |3 C circuit ... edges of a minimal cycle
b 6 d

matroids ... vertexless graphs
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governed by p1,..., pm, Nonnegative, summing to 1
Shannon entropy H(§) = —p1lnpr — ... — pmInpm
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between 0 and Inm
H(¢) =0 iff all but one p1, ..., pm equal zero
HE) =Inm iff pp=...=pm=2=1
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&1,...,&n random variables governed by a distribution P
N={1,2,3} P
00 01 Ppooo . an array of joint outcomes
011 Po11 . .
10 1]p with a column of probabilities
101 :
summing to one
1 1 0]p1o &
for each set / of labels, eg. I ={1} P
keep the corresponding columns 0 | pooo + poi1
erase row repetitions but add probabilities 1 | p1o1 + p110

to get the marginal distribution P! of P
governing the subvector £ = (&) of random variables

look at the entropy H(&))
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Entropy and matrices

N={1,2,3 P

0 0 0|14

0 1 1|14 _ .
10 114 ... three binary variables
1 1 0 |1/4

H(&p) H(&) H(&) H(&) H(61,&) H(61,83) H(&,63) H(1,62,83)
0 In2 In2 In2 In4 |n4 In4 In4

matroidal rank function multiplied by In2

If &1, ..., &, are distributed uniformly on the linear code generated

by a matrix A over F then H(§;) = rank(A;)In|F|, ] C N.
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Matroids within polymatroids ) .
? ng matroids

Matroids from remote distributions to statistical models

collecting basic properties of the entropies H(&;), | C N

Definition (Polymatroid)

(N, g) is a polymatroid, with a ground set N and
rank function g: [ — [0, +00), | C N, if

g®)=0
g(l)y<g(J) forICJCN
g)+g(J)y=>g(lud)+g(Ind) forl,JC N.

(Edmonts 1970), flows in networks, ‘greedy’ definition
books (Fujishige, Narayanan), review (Lovasz 1982)
connections to entropy: Fujishige 1978, Pippenger 1986
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Matroids within polymatroids Matroids <treme polymatroids

matro vith ideal secret sharing are matroids
Matroids from remote distributions to statistical models
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The polymatroid (N, g) is entropic if a random vector &y = (&;)ien
exists such that g(/) = H() for all | C N.

I — H(&) ... entropy function

(H({,))Igv ... entropic point, in Rr2"

In an entropic polymatroid (N, g), represented by &,
igland g(l)=g(iul) .. & a deterministic function of ;
I, JCNand g(l)+g(J)=g(lUJ)+g(InJ)
§nu and &\ are conditionally independent given §;n

in particular, if / N J = () this is independence of & and &,
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aset | C N in a polymatroid (N, g) is connected iff
gN=g(N)+g(l\J)and JC [ imply J=0or J=1

if N not connected, decompose to g(N) = g(K) + g(N \ K),
g(luJ)y=g(l)+g(J) forall ICKand JC N\ K
for LC N let g1(L) =g(LNK) and go(L) = g(LN(N\ K))
then g = g1 + g2 and g is not on an extreme ray of Hy

(provided g1 # 0 and g» # 0 which implies each one is not a
multiple of the other)
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if N not connected, decompose to g(N) = g(K) + g(N \ K),
g(luJ)y=g(l)+g(J) forall ICKand JC N\ K
for LC N let g1(L) =g(LNK) and go(L) = g(LN(N\ K))
then g = g1 + & and g is not on an extreme ray of Hy

(provided g1 # 0 and g» # 0 which implies each one is not a
multiple of the other)

Theorem (H.Q. Nguen 1978)

For a matroid (N, r), the rank function r is on an extreme ray
of Hy iff it has a connected set | C N such that r(N \ /) = 0.

Nguyen: a necessary and sufficient condition for an integer
polymatroid to be on an extreme ray of Hy
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N ... a set of participants
0 € N ... dealer of a secret
O£ AC2N\O . an access structure
if different /,J € A are not in inclusion and |J A = N\ 0.
(I € A ... a minimal authorized group of participants)

a polymatroid (N, g) admits a (perfect) secret sharing
with the access structure A if

g(0Ul)=g(l)forl € A
g(0uU J) = g(0) + g(J) for J containing no | € A

this implies g(0) < g(i), i e N
the sharing is ideal if g(0) = g(i), i€ N
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Theorem (Blakley Kabatianski 1997)

For a set N of participants and access structure A, a polymatroid
(N, g) admits perfect secret sharing with A and g(i)=1,i € N,
iff (N, g) is a matroid.
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Theorem (Blakley Kabatianski 1997)

For a set N of participants and access structure A, a polymatroid
(N, g) admits perfect secret sharing with A and g(i)=1,i € N,
iff (N, g) is a matroid.

Brickell and Davenport 1991

an analogous theorem identifying matroids in the network
coding?
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a variable with the outcomes 0, 1,2 governed by
Qo = (p?,2p(1 — p),(1 —p)?)  with p unknown

assume a sample 0,2,0,0,2,2 is observed

MLE suggests to guess that p be 1/2 = argmax, p°(1 — p)®

this is the same as taking the empirical distribution
=(1/2,0,1/2)
and minimizing the relative entropy D(P, Qp) over p

the minimum is called the distance of P from model
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N. Ay 2002

suggested to maximize this distance from exponential families

when the model consists of the factorizable distributions over

a hypergraph (hierarchical log-linear models, in particular
graphical Markov ones) then sometimes maximizers correspond to
the ideal sss's (FM 2009)
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If a matroid (N, r) is linear over a field F
then the polymatroid (N, rIn |F|) is entropic. J

From now on, a matroid (N, r) is connected and r(N) > 2.

Given the matroid, for which t > 0is (N, r - t) entropic?

Theorem (FM 1994)

Given a matroid (N, r) and t > 0, a random vector (&;)ien
represents (N, r-t) iff t=Ind for some integer d > 1 and
¢ takes d"() values with the same probability, | C N.

if this happens, the matroid is called p-representable of degree d
. an equivalent combinatorial definition through partitions

. secret sharing matroids, almost affine codes
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d=3

11 23 32

33 12 21 two orthogonal Latin squares
22 31 13

array of nine four-tuples {(/,/, k,/): i,j € {1,2,3}}
with the uniform distribution
the four variables represent the uniform matroid Us 4

each representation of U 4 is of this sort

p-representation of U, 4 of the degree d = 10 exists
(ideal sss for 2 out 3 participants with the secret of size 10)

A matroid (N, r) is p-representable of the degree 2/3 iff it is
linear over GF(2)/GF(3). (Beimel, FM, independently) J
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. an equivalent definition of the group via entropy
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Hp ... the polymatroidal rank functions with the ground set N
H™ C Hy ... the entropy functions within
cl(HR) ... the closure of HR™

consists of almost entropic points (aent)

Theorem (Zhang & Yeung 1997)

cl(HR™) is a convex cone

hence, h € c/(Hy") iff each h-t e c/(H"), t >0

Theorem (Zhang & Yeung 1997)

cl(HR™) is a properly contained in Hy if [N| > 4

non-Shannon type inequalities
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Vamos matroid is not aent
by Zhang & Yeung inequality
the most simple and fundamental non-Shannon type <

aent matroid can violate Ingleton inequality (FM 2007)
the class of aent matroids has co-many excluded minors
(FM, unpublished)

? can a p-representable matroid violate Ingleton inequality 7
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