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NETWORK INFORMATION THEORY

Information theoretic study of multi-user communication scenarios

Extension of point-to-point communication theory [Shannon ‘48]

Started with Shannon’s two-way channel [‘62]
Model of a telephone conversation
A very hard model (unfortunately)

feedback
interference
message cognition

Other simpler channels were proposed and studied
Multiple access channel [Shannon ’61, van-der-Muelen ’71]
Broadcast channel [Cover ‘72]
Interference channel [Ahlswede ‘74]
Relay channel [van-der-Muelen ’71]

Most fundamental problems remain open
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MULTIPLE ACCESS CHANNEL [VAN-DER-MUELEN ’71]
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Decoder (M̂1, M̂2)

Figure : Discrete memoryless multiple access channel (MAC)

Goal: Compute Capacity Region or set of achievable rates?

One of the few settings where the capacity region is established
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CAPACITY REGION OF MAC [AHLSWEDE ’71,’74], [LIAO ’72]

The capacity region is the set of rate pairs (R1,R2) such that they satisfy

R1 ≤ I(X1;Y|X2,Q)

R2 ≤ I(X2;Y|X1,Q)

R1 + R2 ≤ I(X1,X2;Y|Q)

for some pmf p(q)p(x1|q)p(x2|q), with |Q| ≤ 2.

Remarks

Q: convexification random variable (time-sharing)

The region corresponds to a general cut-set outer bound
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BROADCAST CHANNEL [COVER ’72]
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Figure : Discrete memoryless broadcast channel

Goal: Compute Capacity Region or set of achievable rates?

Capacity region: open; established in several classes of channels (including
additive Gaussian noise model)
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BEST KNOWN ACHIEVABLE REGION (M-IB) [MARTON ’79]

The union of rate pairs (R1,R2) satisfying

R1 ≤ I(U,W;Y1)

R2 ≤ I(V,W;Y2)

R1 + R2 ≤ min{I(W;Y1), I(W;Y2)}+ I(U;Y1|W)

+ I(V;Y2|W)− I(U;V|W)

over all (U,V,W)→ X → (Y1,Y2) is achievable.

Remarks
U,V,W: auxiliary random variables
Suffices: |W| ≤ |X|+ 4, |U| ≤ |X|, |V| ≤ |X| [Gohari-Anantharam ’11]

New: |W| ≤ |X|+ 4, |U|+ |V| ≤ |X|+ 1 [Gohari-Nair-Anantharam ’13]

Not known if it is optimal or not
Factorization conjecture [Gohari-Nair-Anantharam ’12]: If true, the above
region is capacity
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BEST OUTER BOUND [EL GAMAL ’79, NAIR-EL GAMAL ’07]

The union of rate pairs (R1,R2) satisfying

R1 ≤ I(U;Y1)

R2 ≤ I(V;Y2)

R1 + R2 ≤ min{I(U;Y1) + I(X;Y2|U), I(V;Y2) + I(X;Y1|V)}

over all (U,V)→ X → (Y1,Y2) forms an outer bound.

Remarks

Suffices: |U| ≤ |X|+ 1, |V| ≤ |X|+ 1

Strictly improves on Körner-Marton outer bound [Nair-El Gamal ’07]

Differs from M-IB [Nair-Wang ’08, Gohari-Anantharam ’11]

Known to be strictly suboptimal [Geng-Gohari-Nair-Yu ’11]
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INTERFERENCE CHANNEL (AHLSWEDE 1974)
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Figure : Discrete memoryless interference channel

Goal: Compute Capacity Region or set of achievable rates?

Capacity region: open problem; known for some (limited) classes

Not known even in the scalar Gaussian case

Known in strong-interference regime [Sato ’78, Han-Kobayashi ’81]
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BEST INNER BOUND (HK-IB) [HAN-KOBAYASHI ’81]

A rate pair (R1,R2) is achievable if

R1 ≤ I(X1;Y1|V,Q)

R2 ≤ I(X2;Y2|U,Q)

R1 + R2 ≤ I(X1,V;Y1|Q) + I(X2;Y2|U,V,Q)

R1 + R2 ≤ I(X2,U;Y2|Q) + I(X1;Y1|U,V,Q)

R1 + R2 ≤ I(X1,V;Y1|U,Q) + I(X2,U;Y2|V,Q)

2R1 + R2 ≤ I(X1,V;Y1|Q) + I(X1;Y1|U,V,Q) + I(X2,U;Y2|V,Q)

R1 + 2R2 ≤ I(X2,U;Y2|Q) + I(X2;Y2|U,V,Q) + I(X1,V;Y1|U,Q)

for some pmf p(q)p(u1, x1|q)p(v, x2|q), where |U1| ≤ |X1|+ 4,
|V| ≤ |X2|+ 4, and |Q| ≤ 6.

Remarks
Q: coded time-division (more than convexification)
Not known if it is optimal or not
Above representation is due to [Chong-Motani-Garg-El Gamal ’08]
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RELAY CHANNEL [VAN-DER-MUELEN ’71]

M Encoder
Xn

Xn
R

q(y, yR|x, xR)
Yn

Yn
R

Decoder

Relay Encoder

M̂

Figure : Point-to-point system with relay

Remarks

Capacity is unknown; very few special cases known

Cut set outer bound: C ≤ maxp(x1,x2) min{I(X1,X2;Y3), I(X1;Y2,Y3|X2)}
Cut set outer bound is strictly sub-optimal [Aleksic,Razagi,Yu ’09]
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COMMENTS ON THE PROBLEMS

One approach [Avestimehr-Diggavi-Tse, ...]

These problems have been open for long time
May be simple expressions for capacity regions do not exist
Why not settle for appromations

A counter argument [this talk]
Before we give up, at the very least, we need to

Determine if Marton’s inner bound is optimal/sub-optimal for the
broadcast channel
Determine if Han-Kobayashi inner bound is optimal/sub-optimal for the
interference channel

Information inequalities play a central role to answer these two questions
Inequalities to prove optimality of inner bounds (factorization
inequalities)
Inequalities to compute extreme points of inner bounds (extremal
inequalities)
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ON OPTIMALITY OF INNER BOUNDS

Converses to coding theorems

Illustrative example: Degraded broadcast channel

X q(y1|x)
Y1

q(y2|y1) Y2

Figure : Degraded broadcast channel

The capacity region is the set of rate pairs (R1,R2) such that they satisfy

R1 ≤ I(X1;Y1|U)

R2 ≤ I(U;Y2)

for some pmf p(u)p(x|u), with |U| ≤ |X|. [Cover ’72, Gallager ’74]
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GALLAGER’S CONVERSE

Given any sequence of codebooks with P(n)
e → 0, observe that

nR2 = H(M2) (message is uniformly distributed)

= I(M2;Yn
2 ) + H(M2|Yn)

≤ I(M2;Yn
2 ) + nR2P(n)

e (Fano’s inequality)

=

n∑
i=1

I(M2;Y2i|Y i−1
21 ) + nR2P(n)

e (chain rule)

≤
n∑

i=1

I(M2,Y i−1
21 ;Y2i) + nR2P(n)

e

=

n∑
i=1

I(Ui;Y2i) + nR2P(n)
e where Ui := (M2,Y i−1

21 )

= n
(

I(UQ;Y2|Q) + R2P(n)
e

)
where Q ∼ uniform {1, . . . , n}

≤ n
(

I(U(n);Y2) + R2P(n)
e

)
where U(n) := (Q,UQ)
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GALLAGER’S CONVERSE -CTD

Similarly

nR1 = H(M1) = I(M1;Yn
1 |M2) + H(M1|M2,Yn

1 )

≤
n∑

i=1

I(M1;Y1i|M2,Y i−1
11 ) + nR1P(n)

e (Fano’s inequality)

≤
n∑

i=1

I(Xi;Y1i|M2,Y i−1
11 ) + nR1P(n)

e (M1,Y i−1
11 )→ Xi → Y1i

=

n∑
i=1

I(Xi;Y1i|M2,Y i−1
11 ,Y i−1

21 ) + nR1P(n)
e Y i−1

21 → Y i−1
11 → (M2,Xi)

≤
n∑

i=1

I(Xi;Y1i|M2,Y i−1
21 ) + nR1P(n)

e (M1,Y i−1
11 ,Y i−1

21 )→ Xi → Y1i

=

n∑
i=1

I(Xi;Y1i|Ui) + nR1P(n)
e Recall Ui = (M2,Y i−1

21 )
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CONTINUED..

nR1 =

n∑
i=1

I(Xi;Y1i|Ui) + nR1P(n)
e

= n
(

I(X;Y1|Q,UQ) + R1P(n)
e

)
Recall Q ∼ uniform {1, . . . , n}

= n
(

I(X;Y1|U(n)) + R2P(n)
e

)
By Caratheodory’s theorem there is (Ũ(n),X) with |Ũ(n)| ≤ |X| such that

I(X;Y1|U(n)) = I(X;Y1|Ũ(n)) and I(U(n);Y2) = I(Ũ(n);Y2).

Letting n→∞, we see that ∃ (U,X) such that

R2 ≤ I(U;Y2)

R1 ≤ I(X;Y1|U)

C. Nair (CUHK) Inequalities in Network Info. Theory - EII April 16, 2013 15 / 43



COMMENTS ON GALLAGERS PROOF AND MORE

GENERALLY

Absolutely brilliant argument
Explicitly constructs an auxiliary U
Every converse and outer bound known today follows this approach

However
It is doing more than it should

Another proof may exhibit existence of auxiliary U without identifying it
The auxiliary U constructed in the converse has no relation to the U
actually employed in the coding phase

Maybe
The problem is in the use of auxiliaries in the representation
Seek other representations
These might lead to different converse arguments

This leads us to information inequalities [this talk]
Factorization inequalities - prove optimality directly
Extremal inequality - To simplify inner bounds
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REVISIT THE CAPACITY REGION FOR DEGRADED

BROADCAST CHANNEL

The capacity region is the set of rate pairs (R1,R2) such that they satisfy

R1 ≤ I(X1;Y1|U)

R2 ≤ I(U;Y2)

for some pmf p(u)p(x|u), with |U| ≤ |X|. [Cover ’72, Gallager ’74]

Seek: Cλ := max(R1,R2)∈C R1 + λR2, for λ ≥ 1 (supporting hyperplanes)

Elementary manipulations

Cλ = max
p(u,x)

λI(U;Y2) + I(X;Y1|U) (corner point)

= max
p(u,x)

λI(X;Y2) + I(X;Y1|U)− λI(X;Y2|U) U → X → Y2

= max
p(x)

(
λI(X;Y2) + max

p(u|x)
(I(X;Y1|U)− λI(X;Y2|U))

)
= max

p(x)

(
λI(X;Y2) + C[I(X;Y1)− λI(X;Y2)]

)
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UPPER CONCAVE ENVELOPES

Given a function f (x), its upper concave envelope is

C[f ] := inf{g(x) : g(x) ≥ f (x), g(x) is concave}.

Figure : Illustration of concave envelope
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AN OBSERVATION

Fix a broadcast channel q(y1, y2|x).

Can treat I(X;Y1)− λI(X;Y2) as a function of p(x).

For λ ≥ 1 define
Tλ(X) := C[I(X;Y1)− λI(X;Y2)]

It is easy to see that

max
p(u|x)

I(X;Y1|U)− λI(X;Y2|U) = C[I(X;Y1)− λI(X;Y2)]

Define Cλ(q) = maxp(x)
(
λI(X;Y2) + Tλ(X)

)
Capacity region of degraded broadcast channel can be expressed as⋂

λ≥1

{(R1,R2) ⊂ R2
+ : R1 + λR2 ≤ Cλ(q)}
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A CONVERSATION

Alice: Hey, we have a new characterization for the superposition coding
region without auxiliaries⋂

λ≥1

{(R1,R2) ⊂ R2
+ : R1 + λR2 ≤ Cλ(q)}

Bob: But is it really different? Isn’t your concave envelope hiding the
auxiliaries

Alice: But the only auxliaries that show up are the ones that are "extremal".
i.e. the only interesting ones are the ones that help compute the upper concave
envelope

Bob: So what? Does this buy you anything: Can we get new results? Can we
simplify old proofs?

Alice: Yes, when we apply this to other settings. Focusing on extremal
auxiliaries has yielded new results. Greatly simplifies old proofs.
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DEGRADED BINARY SYMMETRIC BROADCAST CHANNEL

X Y1 Y2

0

1

0

1

p q

1− p 1− q

1− p 1− q

Figure : Degraded BSC broadcast channel

To compute the union of rate pairs (R1,R2) such that they satisfy

R1 ≤ I(X1;Y1|U)

R2 ≤ I(U;Y2)

for some pmf p(u)p(x|u), with |U| ≤ |X|, it suffices to consider
U 7→ X ∼ BSC(s) [Cover ’72, Wyner-Ziv ’73]

Proof is non-trivial; uses Mrs. Gerber’s lemma (convexity of h(p ∗ h−1(x)))
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USING CONCAVE ENVELOPES

Figure : Illustration of I(X;Y1)− λI(X;Y2)

Immediate that a global maximum exists when P(X = 0) = 1
2 and

P(X = 0|U = 0) = s,P(X = 0|U = 1) = 1− s, i.e, U 7→ X ∼ BSC(s)
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OPTIMALITY USING CONCAVE ENVELOPE

REPRESENTATION

Consider two degraded broadcast channels q1(y11, y21|x1) and q2(y12, y22|x2)

Form a product broadcast channel: q1(y11, y21|x1)⊗ q2(y12, y22|x2)

Tλ(X1,X2) := C[I(X1,X2;Y11,Y12)− λI(X1;X2;Y21,Y22)]

Tλ(X1,X2): function of p(x1, x2)

Claim: If the following factorization inequality holds

Tλ(X1,X2) ≤ Tλ(X1) + Tλ(X2)

then one has optimality of the region⋂
λ≥1

{(R1,R2) ⊂ R2
+ : R1 + λR2 ≤ Cλ(q)},

where Cλ(q) = maxp(x)
(
λI(X;Y2) + Tλ(X)

)
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REMARKS

The above claim is much stronger than what is needed for proving
optimality
Note that I(X;Y) has a similar behaviour, i.e. for q1(y1|x1)⊗ q2(y2|x2)

I(X1,X2;Y1,Y2)

= I(X1,X2;Y1) + I(X1,X2;Y2|Y1)

= I(X1;Y1) + I(X2;Y2|Y1) (Y2 → X2 → X1 → Y1)

≤ I(X1;Y1) + I(X2;Y2)

Proof of Claim: If the factorization inequality holds

Cλ(q⊗ · · · ⊗ q) = max
p(xn)

λI(Xn
1 ;Yn

21) + Tλ(Xn)

≤ max
p(xn)

n∑
i=1

(λI(Xi;Y2i) + Tλ(Xi)) (By assumption)

≤ n max
p(x)

λI(X;Y2) + Tλ(X) = nCλ(q)
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PROOF - CTD

To complete the argument, observe

nR1 + nλR2

≤ λI(M1,M2;Yn
21) + I(M1;Yn

11|M2)− λI(M1;Yn
21|M2) + nεn (Fano)

(a)
≤ λI(Xn;Yn

21) + C[I(Xn;Yn
11)− λI(Xn

1 ;Yn
21)]

≤ max
p(xn)

λI(Xn
1 ;Yn

21) + Tλ(Xn)

where the (a) follows from (M1,M2)→ Xn → (Yn
11,Y

n
21)

Important: The proof I demonstrated is a generic proof
If one can demonstrate an appropriate factorization inequality then

Optimality follows directly from Fano’s inequality
Optimality of the n-letter form (known in many cases)

† If a weaker factorization inequality does not hold then
Inner bound is strictly sub-optimal
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FACTORIZATION INEQUALITIES: INTRODUCTION

Inequalities that factor over product channels

Triivial Example:

I(X1,X2;Y1,Y2) ≤ I(X1;Y1) + I(X2;Y2) when Y1 → X1 → X2 → Y2 is
Markov.

Non-trivial example:

For any product broadcast channel q1(y11, y21|x1)⊗ q2(y12, y22|x2) and λ ≥ 1

Tλ(X1,X2) ≤ Tλ(X1) + Tλ(X2),

where Tλ(X1,X2) = C
[
I(X1,X2;Y11,Y12)− λI(X1,X2;Y21,Y22)

]
Stronger than what I needed earlier (no degradedness assumption)

Implies the (known) capacity region for degraded message sets (two
receivers)
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OTHER FACTORIZATION INEQUALITIES

Define for a broadcast channel

S(X) := C
[
I(X;Y1)− I(X;Y2) + C[I(X;Y2)− I(X;Y1)]

]
For any product broadcast channel q1(y11, y21|x1)⊗ q2(y12, y22|x2)

S(X1,X2) ≤ S(X1) + S(X2)

This yields the secrecy capacity (known result)

For an interference channel, † define

R(X1;X2) := C
[
I(X1;Y1|X2)− I(X1;Y2|X2)

]
For any product interference channel
q1(y11, y21|x11, x21)⊗ q2(y12, y22|x12, x22)

R(X11,X12;X21,X22) ≤ R(X11;X21) + R(X12;X22)
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A FACTORIZATION INEQUALITY - CONJECTURE

For a three-receiver broadcast channel q(y1, y2, y3|x), µ ∈ [0, 1], λ ≥ 1

Tµ,λ(X) := C
[
µI(X;Y1) + (1− µ)I(X;Y2)− λI(X;Y3)

]
For any product broadcast channel q1(y11, y21, y31|x1)⊗ q2(y12, y22, y32|x2)

Tµ,λ(X1,X2) ≤ Tµ,λ(X1) + Tµ,λ(X2) (Conjecture)

Remarks

Know this holds when µ ∈ {0, 1}
If true, would imply the capacity region of three receiver broadcast
channel with two degraded message sets

Problem has been open since the 70s

Numerically verified for channels of small sizes
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PROOF OF A FACTORIZATION INEQUALITY

Claim: For any product broadcast channel q1(y11, y21|x1)⊗ q2(y12, y22|x2) and
λ ≥ 1

Tλ(X1,X2) ≤ Tλ(X1) + Tλ(X2),

where Tλ(X1,X2) = C
[
I(X1,X2;Y11,Y12)− λI(X1,X2;Y21,Y22)

]
Note: This is equivalent to showing that for any U such that

U
X1

X2

(Y11,Y21)

(Y12,Y22)

there exists U1 → X1 → (Y11,Y21) and U2 → X2 → (Y12,Y22) such that

I(X1,X2;Y11,Y12|U)− λI(X1,X2;Y21,Y22|U)

≤ I(X1;Y11|U1)− λI(X1;Y21|U1) + I(X1;Y12|U2)− λI(X1;Y22|U2)
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PROOF CTD..

I(X1,X2;Y11,Y12|U)− λI(X1,X2;Y21,Y22|U)

= I(X1;Y11|U)− λI(X1;Y21|U,Y22) using the Markov

+ I(X2;Y12|U,Y11)− λI(X2;Y22|U) structure

= I(X1;Y11|U,Y22)− λI(X1;Y21|U,Y22) subtract/add term

+ I(X2;Y12|U,Y11)− λI(X2;Y22|U,Y11) I(Y11;Y22|U)

= I(X1;Y11|U1)− λI(X1;Y21|U1) U2 := (U,Y22)

+ I(X2;Y12|U2)− λI(X2;Y22|U1) U1 := (U,Y11)

Note that (U,Y22)→ X1 → (Y11,Y21) and (U,Y11)→ X2 → (Y12,Y22) hold
as desired
Remarks

This proof is motivated by an argument of Csiszar
This inequality has much deeper consequences
Need: an alternate proof of this inequality
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REMARKS ABOUT FACTORIZATION INEQUALITIES

Most proofs of factorization inequalities are motivated by
converses/outer bounds

Though factorization implies optimality, not the other way
One recent converse motivated by factorization

Capacity region of reversely semi-deterministic broadcast channel
[Geng-Gohari-Nair-Yu ’11]
Show strictly sub-optimality of outer bound for broadcast channels

� For most problems where one has good inner bounds one can
conjecture a factorization inequality

Easily check (numerically) if these inequalities hold for small
cardinalities

Need: A method for proving these factorization inequalities, an understanding
of them, and a more formal and precise statement
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EXTREMAL INEQUALITIES: INTRODUCTION

Recall: Factorization inequalities are inequalities that factor over product
channels

Extremal inequalities: Inequalities that compute the extremal auxiliary
random variables

Usual example: Entropy power inequality (EPI) and its variants

More on this later

Another example: Mrs. Gerber’s Lemma ("discrete analogue" of EPI)

Begin with: A couple of discrete extremal inequalities

Motivated by Marton’s inner bound for broadcast channels
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MARTON’S INNER BOUND - BROADCAST CHANNEL

The union of rate pairs (R1,R2) satisfying

R1 ≤ I(U,W;Y1)

R2 ≤ I(V,W;Y2)

R1 + R2≤ min{I(W;Y1), I(W;Y2)}+ I(U;Y1|W)

+I(V;Y2|W)− I(U;V|W)

over all (U,V,W)→ X → (Y1,Y2) is achievable.

T(X) := maxp(uv|x) I(U;Y1) + I(V;Y2)− I(U;V)

Conjecture [Gohari-Nair-Anantharam’12]: For any λ ∈ [0, 1] the following
function factorizes

C[−λH(Y1)− (1− λ)H(Y2) + T(X)]

If true, then M-IB would be sum-rate optimal
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AN INFORMATION INEQUALITY

Recall T(X) := maxp(uv|x) I(U;Y1) + I(V;Y2)− I(U;V)

A 5-variable inequality [Geng-Jog-Nair-Wang ’11]

For any (U,V)→ X → (Y1,Y2) and |X| = 2, the following holds:

I(U;Y1) + I(V;Y2)− I(U;V) ≤ max{I(X;Y1), I(X;Y2)}

In other words when |X| = 2

T(X) = max{I(X;Y1), I(X;Y2)}

Remarks

The inequality is false when |X| = 3
Not quite in the framework of Shannon/non-Shannon type inequalities

The cardinality constraint (natural under a channel coding setting)
destroys the convex cone property
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REMARKS ABOUT THIS INEQUALITY

Conjectured for a particular binary input BC [Nair-Wang ’08]
Motivation: to exhibit gap between inner and outer bounds for this channel

Used perturbation analysis and obtained cardinality bounds for M-IB
[Gohari-Anantharam ’12]

They numerically verified the plausibility of this conjecture

The conjecture was established for the channel [Jog-Nair ’09] extending
the perturbation techniques

The proof was generalized for all binary input broadcast channels
[Geng-Nair-Wang ’10]

What about beyond sum-rate?

Is it true that when (U,V)→ X → (Y1,Y2), |X| = 2, and α > 1

αI(U;Y) + I(V;Z)− I(U;V) ≤ max{αI(X;Y), I(X;Z)}

False (counterexample to this inequality due to Geng)
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BEYOND SUM-RATE

Tα(X) := max
p(u,v|x)

αI(U;Y) + I(V;Z)− I(U;V)

Conjecture [Gohari-Nair-Anantharam ’12]: For λ ∈ [0, 1], α ≥ 1, |X| = 2 and
(U,V)→ X → (Y1,Y2)

C[(α− λ)H(Y)− λH(Z) + Tα(X)]

≤ C[(α− λ)H(Y)− λH(Z) + max{αI(X;Y), I(X;Z)}]

Remarks

Solved affirmatively [Gohari-Nair-Anantharam ’13]

Indeed suffices to consider |U|+ |V| ≤ |X|+ 1 to compute

C[(α− λ)H(Y)− λH(Z) + Tα(X)]

C. Nair (CUHK) Inequalities in Network Info. Theory - EII April 16, 2013 36 / 43



BEYOND SUM-RATE

Tα(X) := max
p(u,v|x)

αI(U;Y) + I(V;Z)− I(U;V)

Conjecture [Gohari-Nair-Anantharam ’12]: For λ ∈ [0, 1], α ≥ 1, |X| = 2 and
(U,V)→ X → (Y1,Y2)

C[(α− λ)H(Y)− λH(Z) + Tα(X)]

≤ C[(α− λ)H(Y)− λH(Z) + max{αI(X;Y), I(X;Z)}]

Remarks

Solved affirmatively [Gohari-Nair-Anantharam ’13]

Indeed suffices to consider |U|+ |V| ≤ |X|+ 1 to compute

C[(α− λ)H(Y)− λH(Z) + Tα(X)]

C. Nair (CUHK) Inequalities in Network Info. Theory - EII April 16, 2013 36 / 43



ANOTHER FACTORIZATION CONJECTURE

Tα(X) := max
p(u,v|x)

αI(U;Y) + I(V;Z)− I(U;V)

For λ ∈ [0, 1], α ≥ 1, define

Sα,λ(X) := C[(α− λ)H(Y)− λH(Z) + Tα(X)]

Conjecture [Gohari-Nair-Anantharam ’12]: The functional Sα,λ(X) factorizes
over product broadcast channels

Remarks
If true, would imply that M-IB is the capacity region for a DM-BC (very
huge deal)
Know it is true when λ ∈ {0, 1}
Numerically verified for product of binary channels
Feeling: You need new extremal inequalities and progress on
factorization techniques to make progress
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ENTROPY POWER INEQUALITY (EPI)

Perhaps one of the most famous information inequalities

EPI: If X,Y are independent and have densities

22h(X+Y) ≥ 22h(X) + 22h(Y)

Conditional EPI: If X → U → Y is Markov, and conditioned on U (finite
valued) they have densities, then

22h(X+Y|U) ≥ 22h(X|U) + 22h(Y|U)

This is an extremal inequality

Its utility has been to evaluate extremal auxiliaries

Several variations of this inequality known and used

Key to several converses in Gaussian noise settings (until recently)

Proof uses perturbation ideas [Stam ’58]
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AN ILLUSTRATION OF EPI’S USE

Consider the Gaussian degraded broadcast channel

X
Y1

Y2+ +

Z1 ∼ N (0,N1) Z2 ∼ N (0,N2)

Power constraint: E(X2) ≤ P.

The capacity region is the set of rate pairs (R1,R2) such that they satisfy

R1 ≤ I(X1;Y1|U)

R2 ≤ I(U;Y2)

for some (U,X) with E(X2) ≤ P

How would you compute this region? (real-valued variables)
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BERGMAN’S PROOF (1973)

Let
h(Y1|U) =

1
2

log(2πe(N1 + aP))

for some a ∈ [0, 1]

By EPI

22h(Y2|U) = 22h(Y1+Z2|U) ≥ 22h(Y1|U) + 22h(Z2|U) = 2πe(N1 + aP + N2)

Thus if

R1 ≤ I(X1;Y1|U) = H(Y1|U)− h(Y1|X) =
1
2

log
(

1 +
aP
N1

)
then

R2 ≤ I(U;Y2) ≤
1
2

log
(

1 +
aP

N1 + N2

)
Equality: X = U + V, U ⊥ V, V ∼ N (0, aP),U ∼ N (0, (1− a)P)
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BEYOND THE SCOPE OF THIS TALK

Factorization inequalities used to replace EPI in converses [Geng-Nair ’12]

Recover known converse proofs without using EPI (and in a much
simpler way)

In addition solved an important open problem of 2-receiver vector
Gaussian broadcast channel with private and common messages

Basic idea: Use factorization inequalities to deduce that if X is a maximizer to
a relevant optimization problem, X1,X2 i.i.d. ∼ X then

Both X1+X2√
2

and X1−X2√
2

are also maximizers

Further X1+X2√
2

and X1−X2√
2

are independent

Complete the argument (optimality of Gaussian) either using

Central limit theorem

Gaussian characterization: If X,Y are independent and X + Y,X − Y are
independent then X,Y are i.i.d. Gaussians [Berstein ’40, Skijtovic ’54]
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CONCLUDING REMARKS

New representations using concave envelopes
Greatly simplifies some existing proofs

Optimality using factorization inequalities
As a new tool to study optimality of inner bounds

Extremal inequalities to compute extremal auxiliaries
Cardinality constrained inequalities are richer and messier, but essential

Mentioned some open problems and conjectures

Few more exciting ideas left out from this talk

WANTED: A new (†) proof of the factorization of

Tλ(X) := C[I(X;Y)− λI(X;Z)], λ ≥ 1
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Thank You
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