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NETWORK INFORMATION THEORY

Information theoretic study of multi-user communication scenarios

e Extension of point-to-point communication theory [Shannon ‘48]

@ Started with Shannon’s two-way channel [‘62]
e Model of a telephone conversation
e A very hard model (unfortunately)
o feedback
e interference
@ message cognition

@ Other simpler channels were proposed and studied

Multiple access channel [Shannon 61, van-der-Muelen *71]
Broadcast channel [Cover 72]

Interference channel [Ahlswede 74]

Relay channel [van-der-Muelen *71]

@ Most fundamental problems remain open
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MULTIPLE ACCESS CHANNEL [VAN-DER-MUELEN *71]

Xi

M; —| Encoder 1

Y" N
q(y|xr, x2) Decoder —— (M, M;)

X

M, —| Encoder 2

Figure : Discrete memoryless multiple access channel (MAC)

Goal: Compute Capacity Region or set of achievable rates?

One of the few settings where the capacity region is established
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CAPACITY REGION OF MAC [AHLSWEDE *71,74], [L1A0 72]

The capacity region is the set of rate pairs (R, Rz) such that they satisfy

Ry <I(X1;Y|X2,0)
RZ S I(X2> Y‘leQ)
Ri + Ry < I(X,X2;Y|Q)

for some pmf p(q)p(x1]q)p(x2lq), with [Q] < 2.
Remarks

@ (: convexification random variable (time-sharing)

@ The region corresponds to a general cut-set outer bound
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BROADCAST CHANNEL [COVER *72]

Decoder 1 — M;

Xn
(My,M>—{ Encoder a0y, y2x)

Yy .
Decoder 2 — M,

Figure : Discrete memoryless broadcast channel
Goal: Compute Capacity Region or set of achievable rates?

Capacity region: open; established in several classes of channels (including
additive Gaussian noise model)
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BEST KNOWN ACHIEVABLE REGION (M-IB) [MarToN *79]
The union of rate pairs (R;, R;) satisfying

Ry <I(U,W; Y1)
Ry <I(V,W;Y2)
Ry + R, <min{I(W;Y,),[(W;Y2)} + I(U; Y, |W)
+1(V; Y2|W) —I(U; V|W)

over all (U,V,W) — X — (Y}, Y>) is achievable.

Remarks
e U,V,W: auxiliary random variables
e Suffices: |W| < |X| +4,|U| < |X|,|V]| < |X| [Gohari-Anantharam "11]
e New: |W| < |X|+4,|U| + |V| < |X| + 1 [Gohari-Nair-Anantharam " 13]
@ Not known if it is optimal or not

@ Factorization conjecture [Gohari-Nair-Anantharam *12]: If true, the above
region is capacity
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BEST OUTER BOUND [EL GAMAL ’79, NAIR-EL GAMAL ’07]

The union of rate pairs (R;, R;) satisfying

Ry <I(U; 1)
R, <I(V;Y,)
Ry + Ry <min{I(U; 1) + 1(X; Yo|U), 1(V; Y2) + 1(X; Y1|V)}

over all (U,V) — X — (Y}, Y2) forms an outer bound.

Remarks
e Suffices: |U| < |X|+ 1,|V| < |X|+1
@ Strictly improves on Kdrner-Marton outer bound [Nair-El Gamal *07]
e Differs from M-IB [Nair-Wang *08, Gohari-Anantharam *11]
@ Known to be strictly suboptimal [Geng-Gohari-Nair-Yu " 11]
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INTERFERENCE CHANNEL (AHLSWEDE 1974)

X7 Y?
1 1 R
M; —— Encoder 1 Decoder 1 —— M,

q()’lJ2|x1,x2)

X3 Yy .
M, —— Encoder 2 Decoder 2 —— M,

Figure : Discrete memoryless interference channel

Goal: Compute Capacity Region or set of achievable rates?

Capacity region: open problem; known for some (limited) classes

Not known even in the scalar Gaussian case

e Known in strong-interference regime [Sato *78, Han-Kobayashi *81]
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BEST INNER BOUND (HK-IB) [HaN-KoBAYASHI *81]

A rate pair (R;, R,) is achievable if

Ry < I(X1;: Y|V, 0)
Ry < 1(X2; Y»|U, Q)
Ry + Ry <I(X1, Vi Y1]Q) + 1(X2; Y2|U, V, Q)
R+ Ry < I(X2,U; Y2|Q) + I(X1; V1|U, V, Q)
Ri+ Ry < I(X1,V; Y1|U, Q) + I(X2, U; 2|V, Q)
2R + Ry < I(X1,V; Y1|Q) +I(X1; Y1|U,V, Q) + (X2, U; Y2 |V, Q)
Ry + 2Ry < I(X2,U; Y5|Q) + I(X2; YU, V, Q) + I(X1, V; Y1|U, Q)
for some pmf p(q)p(u1,x1|q)p(v, x2|q), where [Uy| < [Xi] + 4,
V| < |X»2| + 4, and |Q| < 6.

Remarks
@ (O: coded time-division (more than convexification)
@ Not known if it is optimal or not
@ Above representation is due to [Chong-Motani-Garg-El Gamal *08]
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RELAY CHANNEL [VAN-DER-MUELEN °71]

Relay Encoder

Yi Xk

X" Y"
M —{ Encoder q(y, yrlx, X&) Decoder —— M

Figure : Point-to-point system with relay

Remarks
@ Capacity is unknown; very few special cases known
@ Cut set outer bound: C < max,y, y,) min{/(X1, X2; ¥3),1(X1; Y2, Y3|X2) }
@ Cut set outer bound is strictly sub-optimal [Aleksic,Razagi,Yu *09]
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COMMENTS ON THE PROBLEMS

One approach [Avestimehr-Diggavi-Tse, ...]
@ These problems have been open for long time
@ May be simple expressions for capacity regions do not exist
@ Why not settle for appromations
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COMMENTS ON THE PROBLEMS

One approach [Avestimehr-Diggavi-Tse, ...]
@ These problems have been open for long time
@ May be simple expressions for capacity regions do not exist
@ Why not settle for appromations

A counter argument [this talk]
e Before we give up, at the very least, we need to
e Determine if Marton’s inner bound is optimal/sub-optimal for the
broadcast channel
e Determine if Han-Kobayashi inner bound is optimal/sub-optimal for the
interference channel
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COMMENTS ON THE PROBLEMS

One approach [Avestimehr-Diggavi-Tse, ...]
@ These problems have been open for long time
@ May be simple expressions for capacity regions do not exist
@ Why not settle for appromations

A counter argument [this talk]
e Before we give up, at the very least, we need to

e Determine if Marton’s inner bound is optimal/sub-optimal for the
broadcast channel

e Determine if Han-Kobayashi inner bound is optimal/sub-optimal for the
interference channel

Information inequalities play a central role to answer these two questions
@ Inequalities to prove optimality of inner bounds (factorization
inequalities)

@ Inequalities to compute extreme points of inner bounds (extremal
inequalities)
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ON OPTIMALITY OF INNER BOUNDS

Converses to coding theorems

Illustrative example: Degraded broadcast channel

Y
X — q0nlx) qn2ly) — T2

Figure : Degraded broadcast channel

The capacity region is the set of rate pairs (R, R;) such that they satisfy

Ry <I1(Xy;Y1|U)
Ry, < I(U; Yz)

for some pmf p(u)p(x|u), with |U| < |X|. [Cover *72, Gallager *74]
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GALLAGER’S CONVERSE

Given any sequence of codebooks with Pg") — 0, observe that
nRy, = H(M,) (message is uniformly distributed)
= I(M3;Y3) + H(M|Y")
< I(My; Y5) + nRgPS,") (Fano’s inequality)

n
= Z I[(M>; YMY;I) + nRngn) (chain rule)
i=1

n
<> I(My, V5T V) + nRyPY
i=1

- ZI(Ui; Y2i) + ”Rngn) where U; := (M>, Y;l)

i=1
- ”(I(UQ; 2|0) +R2P£n)) where Q ~ uniform {1, ...,n}
S n([(U(”)’ YZ) —+ R2P£H)> Where U(n) = (Q, UQ)
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GALLAGER’S CONVERSE -CTD

Similarly
nR, = H(M]) = I(Ml; ?|M2) +H(M1 |M2, Yil)
n
< Z I(My; Y| My, Yﬁ]) + anpg”) (Fano’s inequality)
ijl
< ST I(Xi YilMy, YiTY) + nR P (M, YY) = X — Yy
i=1

n
= I Vil YL YY) #nRiPY Y S Y (M, X))

i=1
n
< ST I(Xi YilMy, Vi) + nR, P My, YT YY) = X — vy
i=1
n
= 3" I(X;; YiilUs) + nR, P Recall U; = (M,, Yi")
i=1
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CONTINUED..

anzz (Xi; Yii|U;) + nR PP

1(X;Y1]Q, Ug) +R1P(")> Recall Q ~ uniform {1,...,

- n(I(X; U™ + R2P§"))

By Caratheodory’s theorem there is (U, X) with || < |X| such that

I(X:; YU = 1(X; 71| 0™) and 1I(U™;Y,) = 1(U™; 1,).

Letting n — oo, we see that 3 (U, X) such that

R, <I(U; Y,)
Ry <I(X;nh|U) O
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COMMENTS ON GALLAGERS PROOF AND MORE
GENERALLY

@ Absolutely brilliant argument
e Explicitly constructs an auxiliary U
e Every converse and outer bound known today follows this approach
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COMMENTS ON GALLAGERS PROOF AND MORE
GENERALLY

@ Absolutely brilliant argument
e Explicitly constructs an auxiliary U
e Every converse and outer bound known today follows this approach

e However
e It is doing more than it should
@ Another proof may exhibit existence of auxiliary U without identifying it
e The auxiliary U constructed in the converse has no relation to the U
actually employed in the coding phase
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COMMENTS ON GALLAGERS PROOF AND MORE
GENERALLY

@ Absolutely brilliant argument
e Explicitly constructs an auxiliary U
e Every converse and outer bound known today follows this approach

e However
e It is doing more than it should
@ Another proof may exhibit existence of auxiliary U without identifying it
e The auxiliary U constructed in the converse has no relation to the U
actually employed in the coding phase

e Maybe
e The problem is in the use of auxiliaries in the representation
e Seek other representations
e These might lead to different converse arguments

@ This leads us to information inequalities [this talk]
e Factorization inequalities - prove optimality directly
e Extremal inequality - To simplify inner bounds
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REVISIT THE CAPACITY REGION FOR DEGRADED
BROADCAST CHANNEL

The capacity region is the set of rate pairs (R, Rz) such that they satisfy
Ry <I(X1; 1 |U)
Ry <I(U; Y2)
for some pmf p(u)p(x|u), with |U| < |X|. [Cover *72, Gallager *74]
Seek: Cy := maxg, r,)ec Ri + ARy, for A > 1 (supporting hyperplanes)
Elementary manipulations

Cy\ = n(lax) M(U;Y,) +1(X; Y1|U) (corner point)
p(ux

= max M(X; Ys) +I(X; Y1 |U) — M(X; Y2|U) U—=X—Y,
p u7x

= max ()\I(X; Y2) + max (I(X; Y1 |U) — M(X; Y2|U)))
p(x) p(ulx)

= max (M(X: ¥2)+ (X 1) = M )] )
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UPPER CONCAVE ENVELOPES

Given a function f(x), its upper concave envelope is

C[f] := inf{g(x) : g(x) > f(x), g(x) is concave}.

0157
0.10

0.05

-0.05

-0.10

Figure : Illustration of concave envelope
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AN OBSERVATION

Fix a broadcast channel q(y;, y2|x).

Can treat I(X;Y;) — M(X; Y>) as a function of p(x).
For A\ > 1 define

T\(X) :=C[I(X;Y1) — M(X; Y2)]

It is easy to see that
maX)I(X; Yi|U) = M(X; Y2|U) = CI(X; Y1) — M(X; Y2)]

plulx

Define C)\(q) = max,y (M(X;Y2) + Tx(X))

C. Nair (CUHK)
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AN OBSERVATION

Fix a broadcast channel q(y;, y2|x).

Can treat I(X;Y;) — M(X; Y>) as a function of p(x).
For A\ > 1 define
Th(X) = €lI(X; Y1) — M(X; Y2)]

It is easy to see that

maX)I(X; Yi|U) = M(X; Y2|U) = CI(X; Y1) — M(X; Y2)]

plulx

Define C)\(q) = max,y (M(X;Y2) + Tx(X))

Capacity region of degraded broadcast channel can be expressed as

(V{(R1,R) CRY : Ry + AR, < Ca(q)}
A>1

C. Nair (CUHK)
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A CONVERSATION

Alice: Hey, we have a new characterization for the superposition coding
region without auxiliaries

ﬂ{(Rl,Rz) CR3 : R+ ARy < CA(q)}
A>1

Bob: But is it really different? Isn’t your concave envelope hiding the
auxiliaries
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A CONVERSATION

Alice: Hey, we have a new characterization for the superposition coding
region without auxiliaries

ﬂ{(Rl,Rz) CR3 : R+ ARy < CA(q)}
A>1

Bob: But is it really different? Isn’t your concave envelope hiding the
auxiliaries

Alice: But the only auxliaries that show up are the ones that are "extremal".
i.e. the only interesting ones are the ones that help compute the upper concave
envelope

Bob: So what? Does this buy you anything: Can we get new results? Can we
simplify old proofs?
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A CONVERSATION

Alice: Hey, we have a new characterization for the superposition coding
region without auxiliaries

ﬂ{(Rl,Rz) CR3 : R+ ARy < CA(q)}
A>1

Bob: But is it really different? Isn’t your concave envelope hiding the
auxiliaries

Alice: But the only auxliaries that show up are the ones that are "extremal".
i.e. the only interesting ones are the ones that help compute the upper concave
envelope

Bob: So what? Does this buy you anything: Can we get new results? Can we
simplify old proofs?

Alice: Yes, when we apply this to other settings. Focusing on extremal
auxiliaries has yielded new results. Greatly simplifies old proofs.
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DEGRADED BINARY SYMMETRIC BROADCAST CHANNEL

1 - 1 -
0 b 1 0
X p Y,
1 5 T4 1

Figure : Degraded BSC broadcast channel

To compute the union of rate pairs (R}, R;) such that they satisfy
Ry <I(X;;Y,|U)
R, <I1(U;Y»)
for some pmf p(u)p(x|u), with |U| < |X|, it suffices to consider
U — X ~ BSC(s) [Cover 72, Wyner-Ziv *73]

Proof is non-trivial; uses Mrs. Gerber’s lemma (convexity of i(p * h~!(x)))
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USING CONCAVE ENVELOPES

0.0257

0.020

0.0157

0.010

0.005

0.000

Figure : Tlustration of I(X; Y;) — M(X; Y2)

Immediate that a global maximum exists when P(X = 0) = 5 and

PX=0{U=0)=s,P(X=0U=1)=1-s,ie U X ~ BSC(s)
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OPTIMALITY USING CONCAVE ENVELOPE
REPRESENTATION

Consider two degraded broadcast channels q; (y11, y21|x1) and q2(y12, y22|x2)

Form a product broadcast channel: q;(yi1,y21]x1) ® q2(y12, y22]%2)

T\(X1,X2) := CI(X1,X2; Y11, Yi2) — M(X1;X2; Yar, Y22)]
Tx(X1,X>): function of p(xj, x3)
Claim: If the following factorization inequality holds
T\(X1,X2) < T\(Xy) + Th(X2)

then one has optimality of the region

[(M{(Ri,R2) CRY : Ry + ARy < Ca(a)},
A>1

where C)(q) = max, ) (M(X; Y2) + Tx(X))
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REMARKS

@ The above claim is much stronger than what is needed for proving

optimality
e Note that I(X; Y) has a similar behaviour, i.e. for q; (yi]x1) ® q2(y2|x2)
I(X17X2;Y11Y2)
= 1(X1,X2; Y1) + 1(X1, X2; V2| 1)
:I(Xl;Y1)+I(X2;Y2|Y1) (Y2—>X2 —>X1—>Y1)

<I(X1; Y1) +1(X2; Y2)

April 16,2013 24743
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REMARKS

@ The above claim is much stronger than what is needed for proving

optimality
e Note that I(X; Y) has a similar behaviour, i.e. for q; (yi]x1) ® q2(y2|x2)

[(X1,X2;Y1,Y2)
=1(X1,X2; Y1) + (X1, X2; V2| Y1)
=I1(X1; Y1) +1(X2; Yo|Y1) (Y, > Xo = X; = 1)
<IXi: ) +1(Xp; Y2)
Proof of Claim: If the factorization inequality holds

O(@a®--®q) = g(l;g)dl( 1 Y21) + Th(X")

< n%a))( (M(X;; Yai) + Ta(X:)) (By assumption)
P 3
< nmax M(X; Y2) + TA(X) = nCx(q)
p(x

April 16, 2013 24743
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PROOF - CTD

To complete the argument, observe

l’lR] —|—n)\R2
< )\I(M],Mz; Ygl) +I(M1; Y?”Mz) — )\I(Ml; Y&’Mz) + ne, (Fano)

(a)
< M(X"Y5,) + €[I(X"; Y1) — M(XT; Y3))]

< max A(XT;Y3)) + Ta(X")
p(x"

where the (a) follows from (M, M>) — X" — (Y7,,Y},)
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PROOF - CTD

To complete the argument, observe

l’lR] +I’l)\R2
< )\I(M],Mz; ;1) +1(M1; ?l‘M2> — )\I(Ml; Ygl ’Mz) + ne, (Fano)

(a)

< M(X"Y5,) + €[I(X"; Y1) — M(XT; Y3))]
Sngw;M( 1 Y5) + Ta(X")

p(x"

where the (a) follows from (M, M>) — X" — (Y7,,Y},)

Important: The proof I demonstrated is a generic proof

@ If one can demonstrate an appropriate factorization inequality then
e Optimality follows directly from Fano’s inequality
e Optimality of the n-letter form (known in many cases)

o 7| If a weaker factorization inequality does not hold then
e Inner bound is strictly sub-optimal
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FACTORIZATION INEQUALITIES: INTRODUCTION

Inequalities that factor over product channels

Triivial Example:

) I(XI,XQ;Yl,Yz) < I(Xl;Yl) —|—I(X2;Y2) when Y- Xi—=2Xo— 1 is
Markov.
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FACTORIZATION INEQUALITIES: INTRODUCTION

Inequalities that factor over product channels

Triivial Example:

) I(XI,XQ;Yl,Yz) < I(Xl;Yl) —|—I(X2;Y2) when Y- Xi—=2X— Y is
Markov.

Non-trivial example:

For any product broadcast channel q; (y11,y21]x1) ® q2(y12, y22|x2) and A > 1
Th(X1,X2) < Th(Xh) + Th(X2),

where Tx(X1,X2) = €[I(X1,X2; Y11, Y12) — M(X1, X2; Yar, Yo

e Stronger than what I needed earlier (no degradedness assumption)

@ Implies the (known) capacity region for degraded message sets (two
receivers)

C. Nair (CUHK) Inequalities in Network Info. Theory - EIT
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OTHER FACTORIZATION INEQUALITIES

Define for a broadcast channel

S(X) := C[I(X; Y1) — I(X; Y2) + €[I(X; Y2) — [(X; Y1)]]

For any product broadcast channel q; (y11,y21]x1) ® q2(y12, y22|%2)

S(X1,X2) < 8(X1) + S(X2)

e This yields the secrecy capacity (known result)
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OTHER FACTORIZATION INEQUALITIES
Define for a broadcast channel
S(X) := €I(X; Y1) — I(X; Y2) + C[I(X; Y2) — I(X; Y1)]]
For any product broadcast channel q; (y11,y21]x1) ® q2(y12, y22|%2)
S(X1,X2) < S(Xp) + S(X2)
e This yields the secrecy capacity (known result)
For an interference channel, 1 define
R(X1;Xz) := C[I(X1; Y1[X2) — I(X1; Y2 |Xs)]

For any product interference channel
g1 (V11,21 |x11,%21) @ q2(y12, y22|x12, X22)

R(X11,X12; X21,X20) < R(X11;X21) + R(X12; X22)
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A FACTORIZATION INEQUALITY - CONJECTURE

For a three-receiver broadcast channel q(yy, y2, y3|x), u € [0,1],A > 1
T (X) = €[l (X; Y1) + (1 = )I(X; Y2) — M(X; V3)]
For any product broadcast channel q1 (y11, 21, y31]x1) ® q2(y12, 22, ¥32/%2)

Tux(X1,X2) < Tya(X1) + Tua(X2) (Conjecture)
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A FACTORIZATION INEQUALITY - CONJECTURE

For a three-receiver broadcast channel q(yy, y2, y3|x), u € [0,1],A > 1

T (X) = €[l (X; Y1) + (1 = )I(X; Y2) — M(X; V3)]

For any product broadcast channel qi (y11, Y21, y31|x1) ® q2(y12, 22, y32/%2)

Tux(X1,X2) < Tya(X1) + Tua(X2) (Conjecture)

Remarks
@ Know this holds when p € {0, 1}

e If true, would imply the capacity region of three receiver broadcast
channel with two degraded message sets

e Problem has been open since the 70s

@ Numerically verified for channels of small sizes
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PROOF OF A FACTORIZATION INEQUALITY

Claim: For any product broadcast channel q; (y11,y21|x1) ® q2(y12, y22|x2) and
A>1

T\(X1,X2) < Th(X1) + T\ (X2),
where Tx(X1,X2) = €[I(X1, X2; Y11, Y12) — M(X1, X2; Yar, Yo2)]

Note: This is equivalent to showing that for any U such that

1 — (Y11, Y21)
U<j(
‘X

»—— (Y12, Y2)

there exists Uy — X; — (Y11, Y21) and U, — X, — (Y12, Y22) such that

(X1, X2; Y11, Y12|U) — M(X1,X2; Yar, Ya2|U)
<I(X1; Y1 |Uy) — M(X1; Y21 |Uy) + [(X1; Y12|Uz) — M(Xy; Yo |Ua)

C. Nair (CUHK)
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PROOF CTD..

(X1, X2; Y11, Y12|U) — M(X1, X2; Yar, Ya2|U)

=I(X1;Y11|U) — M(Xy; Y21 |U, Ya2) using the Markov
+ I(Xp; Y12|U, Y11) — M(Xa; You|U) structure

=I1(X1; Y11|U, Y) — M(X1; Y21|U, Y22) subtract/add term
+1(X2; Y12|U, Y11) — M(X2; Y2o|U, Y1) I(Y11; Y22|U)

= I1(X1; Y11|Uy) — M(X1; Y21|Uy) Uy := (U, Yn)
+ I(Xa; Y12|Us) — M(Xp; Yoo |Uy) Uy = (U, Y1)

Note that (U, Y22) — X > (YU, Y21) and (U, YU) — X, — (le, Yzz) hold
as desired ]
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PROOF CTD..

(X1, X2; Y11, Y12|U) — M(X1, X2; Yar, Ya2|U)

=I(X1;Y11|U) — M(Xy; Y21 |U, Ya2) using the Markov
+ I(Xp; Y12|U, Y11) — M(Xa; You|U) structure
=I1(X1; Y11|U, Y) — M(X1; Y21|U, Y22) subtract/add term
+1(Xo; Y12|U, Y11) — M(X2; Y22 [U, Y1) 1(Y11; Y22|U)
=I1(X1; Y11|U1) — M(X1; Y21 |Uy) U, .= (U, Y2)
+ 1(X2; Y12|Up) — M(Xo; Ya2|U)) U, = (U,Yn)
Note that (U, Y22) — X1 — (Y11, Y21) and (U, Y1) — X2 — (Y12, Y22) hold
as desired O
Remarks

@ This proof is motivated by an argument of Csiszar
@ This inequality has much deeper consequences
@ Need: an alternate proof of this inequality
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REMARKS ABOUT FACTORIZATION INEQUALITIES

@ Most proofs of factorization inequalities are motivated by
converses/outer bounds

e Though factorization implies optimality, not the other way
@ One recent converse motivated by factorization

e Capacity region of reversely semi-deterministic broadcast channel
[Geng-Gohari-Nair-Yu " 11]
e Show strictly sub-optimality of outer bound for broadcast channels
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REMARKS ABOUT FACTORIZATION INEQUALITIES

@ Most proofs of factorization inequalities are motivated by
converses/outer bounds

e Though factorization implies optimality, not the other way
@ One recent converse motivated by factorization

e Capacity region of reversely semi-deterministic broadcast channel
[Geng-Gohari-Nair-Yu " 11]
e Show strictly sub-optimality of outer bound for broadcast channels

For most problems where one has good inner bounds one can
conjecture a factorization inequality

@ Easily check (numerically) if these inequalities hold for small
cardinalities
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REMARKS ABOUT FACTORIZATION INEQUALITIES

@ Most proofs of factorization inequalities are motivated by
converses/outer bounds

e Though factorization implies optimality, not the other way
@ One recent converse motivated by factorization

e Capacity region of reversely semi-deterministic broadcast channel
[Geng-Gohari-Nair-Yu " 11]
e Show strictly sub-optimality of outer bound for broadcast channels

For most problems where one has good inner bounds one can
conjecture a factorization inequality

@ Easily check (numerically) if these inequalities hold for small
cardinalities

Need: A method for proving these factorization inequalities, an understanding
of them, and a more formal and precise statement
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EXTREMAL INEQUALITIES: INTRODUCTION

Recall: Factorization inequalities are inequalities that factor over product
channels

Extremal inequalities: Inequalities that compute the extremal auxiliary
random variables

Usual example: Entropy power inequality (EPI) and its variants
@ More on this later

Another example: Mrs. Gerber’s Lemma ("discrete analogue" of EPI)
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EXTREMAL INEQUALITIES: INTRODUCTION

Recall: Factorization inequalities are inequalities that factor over product
channels

Extremal inequalities: Inequalities that compute the extremal auxiliary
random variables

Usual example: Entropy power inequality (EPI) and its variants
@ More on this later

Another example: Mrs. Gerber’s Lemma ("discrete analogue" of EPI)

Begin with: A couple of discrete extremal inequalities

@ Motivated by Marton’s inner bound for broadcast channels
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MARTON’S INNER BOUND - BROADCAST CHANNEL

The union of rate pairs (R;, R;) satisfying
Rl S I(ana Yl)
Ry < I(V,W; Y2)
Ry + Ro<min{l(W;Y,),I(W;Y2)} + I(U; Y1|W)
HI(V; Ya|W) — I(U; VW)

overall (U,V,W) — X — (Y1, Y>) is achievable.
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MARTON’S INNER BOUND - BROADCAST CHANNEL

The union of rate pairs (R;, R;) satisfying

Rl < I(Ua Wa Yl)

Ry < I(V,W; Y2)

Ry + Ro<min{l(W;Y,),I(W;Y2)} + I(U; Y1|W)
HI(V; Y5|W) — I(U; VW)

overall (U,V,W) — X — (Y1, Y>) is achievable.
T(X) = MaXp () I(U, Yl) + I(V, Y2) — I(U, V)
Conjecture [Gohari-Nair-Anantharam’12]: For any A € [0, 1] the following

function factorizes

E[-AH(¥) — (1 — NH(Y2) + T(X)]
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MARTON’S INNER BOUND - BROADCAST CHANNEL

The union of rate pairs (R;, R;) satisfying

R, <I(U,W;Y))
R, <I(V,W;Y)
Ry + Ro<min{l(W;Y,),I(W;Y2)} + I(U; Y1|W)
HI(V; Ya|W) — I(U; VW)

overall (U,V,W) — X — (Y1, Y>) is achievable.
T(X) = MaXp () I(U, Yl) + I(V, Y2) — I(U, V)
Conjecture [Gohari-Nair-Anantharam’12]: For any A € [0, 1] the following
function factorizes

E[-AH(¥) — (1 — NH(Y2) + T(X)]

If true, then M-IB would be sum-rate optimal
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AN INFORMATION INEQUALITY
Recall T(X) := max, () [(U; Y1) +1(V; Y2) = I(U; V)

A 5-variable inequality
For any (U,V) — X — (Y1, Y2) and |X| = 2, the following holds:

H(U;Y) +1(V;Ya) — I(U; V) < max{I(X; Y1),I(X;Y2)}

In other words when |X| = 2

T(X) =max{I(X;Y),[(X;Y2)}
Remarks

e The inequality is false when |X| = 3

@ Not quite in the framework of Shannon/non-Shannon type inequalities

e The cardinality constraint (natural under a channel coding setting)
destroys the convex cone property
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REMARKS ABOUT THIS INEQUALITY

@ Conjectured for a particular binary input BC [Nair-Wang *08]
e Motivation: to exhibit gap between inner and outer bounds for this channel

@ Used perturbation analysis and obtained cardinality bounds for M-1B
[Gohari-Anantharam ’12]

e They numerically verified the plausibility of this conjecture
@ The conjecture was established for the channel [Jog-Nair *09] extending
the perturbation techniques

@ The proof was generalized for all binary input broadcast channels
[Geng-Nair-Wang ’10]
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REMARKS ABOUT THIS INEQUALITY

@ Conjectured for a particular binary input BC [Nair-Wang *08]
e Motivation: to exhibit gap between inner and outer bounds for this channel

@ Used perturbation analysis and obtained cardinality bounds for M-1B
[Gohari-Anantharam ’12]

e They numerically verified the plausibility of this conjecture

@ The conjecture was established for the channel [Jog-Nair *09] extending
the perturbation techniques

@ The proof was generalized for all binary input broadcast channels
[Geng-Nair-Wang ’10]

What about beyond sum-rate?

Is it true that when (U, V) - X — (Y1, Y2), |[X| =2,and o > 1

ad(U;Y)+1(V;Z) —I(U; V) < max{al(X;Y),I(X;Z)}
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REMARKS ABOUT THIS INEQUALITY

@ Conjectured for a particular binary input BC [Nair-Wang *08]
e Motivation: to exhibit gap between inner and outer bounds for this channel

@ Used perturbation analysis and obtained cardinality bounds for M-1B
[Gohari-Anantharam ’12]

e They numerically verified the plausibility of this conjecture

@ The conjecture was established for the channel [Jog-Nair *09] extending
the perturbation techniques

@ The proof was generalized for all binary input broadcast channels
[Geng-Nair-Wang ’10]

What about beyond sum-rate?

Is it true that when (U, V) - X — (Y1, Y2), |[X| =2,and o > 1
ad(U;Y)+1(V;Z) —I(U; V) < max{al(X;Y),I(X;Z)}

False (counterexample to this inequality due to Geng)
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BEYOND SUM-RATE

To(X) :== max ol(U;Y)+1(V;Z) —I(U;V)
p(u,v|x)
Conjecture [Gohari-Nair-Anantharam "12]: For A € [0, 1], > 1,
(U, V) —- X — (Yl, Yz)

X|=2and

Cl(ar = MH(Y) = AH(Z) + T (X)]
< C(a—ANH(Y)— AH(Z) + max{al(X;Y),[(X;Z)}]
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BEYOND SUM-RATE

To(X) :== max ol(U;Y)+1(V;Z) —I(U;V)
p(u,v|x)

Conjecture [Gohari-Nair-Anantharam "12]: For A € [0, 1], > 1,

(U, V) —- X — (Yl, Yz)

X|=2and
Cl(a = MH(Y) = AH(Z) + To(X)]
< C(a—ANH(Y)— AH(Z) + max{al(X;Y),[(X;Z)}]

Remarks

@ Solved affirmatively [Gohari-Nair-Anantharam " 13]
e Indeed suffices to consider |U| + |V| < |X| 4 1 to compute

Cl(a = MH(Y) = AH(Z) + To(X)]
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ANOTHER FACTORIZATION CONJECTURE

To(X) := pg{l%ﬁ) al(U; Y)+1(V;Z2) — 1(U; V)

For A € [0, 1], > 1, define
San(X) = €l(a — NH(Y) ~ AH(Z) + To(X)]

Conjecture [Gohari-Nair-Anantharam *12]: The functional S, »(X) factorizes
over product broadcast channels
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ANOTHER FACTORIZATION CONJECTURE

To(X) := pg{l%l);) al(U; Y)+1(V;Z2) — 1(U; V)

For A € [0, 1], > 1, define
San(X) = €l(a = NH(Y) = NH(Z) + Ta(X)]

Conjecture [Gohari-Nair-Anantharam *12]: The functional S, »(X) factorizes
over product broadcast channels
Remarks

o If true, would imply that M-IB is the capacity region for a DM-BC (very
huge deal)

e Know it is true when A € {0, 1}
@ Numerically verified for product of binary channels

@ Feeling: You need new extremal inequalities and progress on
factorization techniques to make progress
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ENTROPY POWER INEQUALITY (EPI)

Perhaps one of the most famous information inequalities

EPI: If X, Y are independent and have densities

D2M(XHY) 5 92h(X) 4 2h(Y)

Conditional EPI: If X — U — Y is Markov, and conditioned on U (finite
valued) they have densities, then

D2H(X+Y|U) 5 2h(X|U) | 2h(Y|U)

C. Nair (CUHK)

Inequalities in Network Info. Theory - EIT

April 16,2013



ENTROPY POWER INEQUALITY (EPI)

Perhaps one of the most famous information inequalities

EPI: If X, Y are independent and have densities

D2M(XHY) 5 92h(X) 4 2h(Y)

Conditional EPI: If X — U — Y is Markov, and conditioned on U (finite
valued) they have densities, then

D2H(X+Y|U) 5 2h(X|U) | 2h(Y|U)

This is an extremal inequality

o Its utility has been to evaluate extremal auxiliaries
@ Several variations of this inequality known and used
o Key to several converses in Gaussian noise settings (until recently)

@ Proof uses perturbation ideas [Stam ’58]
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AN ILLUSTRATION OF EPI’S USE

Consider the Gaussian degraded broadcast channel

Y

0 &

ZINN(OaNl) ZZNN(()’NZ)

Power constraint: E(X?) < P.

The capacity region is the set of rate pairs (R;, Ry) such that they satisfy

Ry < I(X\; 1 |U)
Ry <I(U; Ya)

for some (U, X) with E(X?) < P

How would you compute this region? (real-valued variables)
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BERGMAN’S PROOF (1973)

Let !
h(Y1|U) = Elog(Zwe(Nl + aP))
for some a € [0, 1]

By EPI
22h(Y2‘U) — 22h(Y1+Zz|U) 2 22]’1(Y1‘U) + 22h(Zz|U) — 27T6(N1 +aP+N2)
Thus if
1 aP
Ry <I(Xi;Yi|U) = HN|U) = h(Y1]X) = Slog| 1+ N
1
then

1 aP
R, <I(U;Y,) < =1 1
2—(72)_20g<+N1+Nz>

Equality: X =U+V,U L V,V ~ N(0,aP),U ~ N (0, (1 — a)P)
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BEYOND THE SCOPE OF THIS TALK

Factorization inequalities used to replace EPI in converses [Geng-Nair "12]

@ Recover known converse proofs without using EPI (and in a much
simpler way)

@ In addition solved an important open problem of 2-receiver vector
Gaussian broadcast channel with private and common messages

Basic idea: Use factorization inequalities to deduce that if X is a maximizer to
a relevant optimization problem, X, X, i.i.d. ~ X then

X1 +X> X;—X, . .
@ Both & and are also maximizers
V2 V2

e Further XI\J/%XZ and X.\;in are independent

Complete the argument (optimality of Gaussian) either using

@ Central limit theorem

@ Gaussian characterization: If X, Y are independent and X 4+ Y, X — Y are
independent then X, Y are i.i.d. Gaussians [Berstein 40, Skijtovic *54]
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CONCLUDING REMARKS

@ New representations using concave envelopes
e Greatly simplifies some existing proofs

Optimality using factorization inequalities
e As anew tool to study optimality of inner bounds

e Extremal inequalities to compute extremal auxiliaries
e Cardinality constrained inequalities are richer and messier, but essential

Mentioned some open problems and conjectures

e Few more exciting ideas left out from this talk
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CONCLUDING REMARKS

@ New representations using concave envelopes
e Greatly simplifies some existing proofs

@ Optimality using factorization inequalities
e As anew tool to study optimality of inner bounds

e Extremal inequalities to compute extremal auxiliaries
e Cardinality constrained inequalities are richer and messier, but essential

@ Mentioned some open problems and conjectures

e Few more exciting ideas left out from this talk
WANTED: A new (1) proof of the factorization of

TA(X) = CI(X;Y) = M(X;Z)], A>1
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Thank You




