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Bounding the Region of Entropic Vectors Γ̄∗N from the Outside

Φ4 binary entropic vectors

ΓN Shannon Outer Bound
ZN Non-Shannon Outer Bound
Γ̄∗

N
 Region of Entropic Vectors

SN Subspace Ranks Bound

conv(Φ4) convex hull

Mq
N

GF(q)-Representable Matroid 
Bound

• Shannon Outer Bound: ΓN . entropy is submod-

ular:

I(XA;XB|XC) ≥ 0 ∀A,B, C
Γ2 = Γ̄∗2,Γ3 = Γ̄∗3.

ΓN 6= Γ̄∗N , N ≥ 4 Γ̄∗N non-polyhedral convex cone

• Non-Shannon Outer Bounds:[1, 2, 3, 4, 5, 6, 7]

Yeung & Zhang, Dougherty & Freiling & Zeger, Matus

Start with 4 unconstr. r.v.s

add rv. obeying distr. match & Markov. cond.

Intersect ΓN for N ≥ 5 w/ Markov & distr. match

Project back to orig. 4 unconstr. vars.

obtain new information inequalities this way!

overall: Shannon → linear eq./ineq.
⋂ → project

H(X)

H(Y )

H(XY )

H(X)

H(Y )

H(XY )

H(X)

H(Y )

Constraints Projection
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Bounding Γ̄∗N from the Inside, 1: Representable Matroids

Matroids: r ∈ ΓN ∩ Z2N−1, r(A) ≤ |A|
• All non-isomorphic matroids for N ≤ 9 [8] ’08

• enumerating non-iso. matroids is difficult

GF (q)-Representable Matroid: r ∈ ΓN ∩ Z2N−1

s.t. ∃A ∈ GF (q)M×N s.t. r(A) = rank(A:,A)

• repr. matroid = scaled EV!: u ∼ U(GF (q)M )

X = uA ⇒ hA = r(A) log2 q

• Key: representability ⇔ no forbidden minors:

– complete small list known for q ∈ {2, 3, 4}
[9, 10, 11, 12, 13] eg.:GF (2) repr. ⇔ no

U(2, 4) minor (Tutte 1958)

• Γ̄∗N bound: Mq
N conic hull of GF (q)-repr. ma-

troids. (Hassibi et. al. 2010 [14]). see right.

Forbidden
Minor List

List of non-isomorphic
matroids on ground set
size of largest forbidden

minor

Purge Forbidden
Minors from List

conic hull
& representation

conversion

append to the inequalities for
cone of matroids

H(XA) ← H(XA|XB)
substitute every minor 

relationship from higher
dimension N to k

Mq
N
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Bounding Γ̄∗N from the Inside, 2: Inner Bounds from Subspace Ranks

Subspace Bounds: r ∈ ΓN ∩ Z2N−1 projec-

tions of representable matroids, N ′ ≥ N , parti-

tion {1, . . . , N ′} =
⋃N
n=1 Gn, Gn∩Gk = ∅ n 6= k

r(A) = rank([A:,Gn |n ∈ A]) (1)

subspace ranks = scaled EV!:

Xn = uA:,Gn ⇒ hA = r(A) log2 q

SN : conic hull of all subspace ranks

S4: Γ4∩ Ingleton’s [15, 16, 17]

I(X1;X2) + I(X3;X4|X1) + I(X3;X4|X2) − I(X3;X4) ≥ 0

S5 recently characterized by DFZ + Kinser [18,

19]

SN unknown for N ≥ 6, but can inner bounded

by projecting Mq
N (see right)

Build inner bound for SN ( Γ̄∗N :

1. Obtain Mq
N ′ using method

from previous slide, i.e. inter-

sect ΓN with inequalities from

forbidden minors & matroids

2. project (remove all but en-

tropies where each element in

Xn appears together)

H(X)

H(Y )

H(XY )

H(X)

H(Y )

H(XY )

H(X)

H(Y )

Constraints Projection

sound familiar???

Shannon → lin.
⋂ → project
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Bounding Γ̄∗N from the Inside, 3: Outer Bounds for Subspace Ranks SN

• Hammer et. al.: key [16] r.v.s X,Y

made with subspaces: ∃ common in-

formation Z s.t.

H(Z|X) = H(Z|Y ) = 0 (2)

H(Z) = I(X;Y ) (3)

• Common information Z obtained by

looking at component along intersec-

tion of subspaces X Y

• Not all RVs have common informa-

tion, but rvs from subspaces do

Build outer bound for SN ( Γ̄∗N :

1. Shannon

2. Intersect with common infor-

mation equalities (2)

3. project out the common infor-

mations Z

sound familiar?

Shannon → lin.
⋂ → project
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Networking Coding and Distributed Storage Rate Regions
Network Coding

...

...

S

...

...

Ys
s

i

T

e Ue

Re

�(t)
t!s

Out(i)In(i)

(Roughly) intersect Γ̄∗N with

hYs ≥ ωs, s ∈ S hYS =
∑
s∈S

hYs ,

hUOut(s)|Ys = 0, s ∈ S

hUOut(i)|UIn(i)
= 0, i ∈ V \ (S ∪ T )

hUe ≤ Re, e ∈ E

hYβ(t)|UIn(t)
= 0, t ∈ T

and project onto ωs, Re

Distributed Storage (MDCS DSCSC)

El

...

...

ES D
A B

Sj

...

...

...

...

Dm Fm

Ul Vm

⇢ S ⇥ E ⇢ E ⇥ D

⇢ S
RlYj H(Xj) Zl

(Roughly) intersect Γ̄∗N with

hYj ,j∈S =
∑
j∈S

hYj

hZl|(Yj ,j∈Ul) = 0, l ∈ E

h(Yj ,j∈Fm)|(Zl,l∈Vm) = 0, m ∈ D

hYj > H(Xj), j ∈ S

hZl ≤ Rl, l ∈ E

and project onto {H(Xi), Rl}

Substituting inner/outer bounds for Γ̄∗N , we arrive again at

Shannon → linear equality/inequality
⋂ → project
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One Procedure to Rule Four Problems

We’ve covered:

1. Non-Shannon Outer bounds for Γ̄∗N

2. Vector Matroidal Inner Bounds for Γ̄∗N

3. Outer Bound for SN (Conic hull of subspace ranks)

4. Network Coding/Distributed Storage Rate Regions

(Our Point) There were > four jokes... but only one punchline

Shannon → linear equality/inequality
⋂ → project

Thus, let’s have a look at the general computational structure in this agenda.

13
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Many Paths Lead to the Same Truth

∃ wide variety of techniques (yielding mathematically equivalent results) for each step:

Shannon
Outer 
Bound

list of inequalities

list of extreme rays

representation
conversion

known list of
non-isomorphic

matroids

Adding
linear

inequalities/
equalities

append

representation
conversion

run intermediate
double descriptions
step to update ray

list with new inequalties

Project
onto a

subset of 
variables

Fourier
Motzkin

Convex
Hull

Method

remove
elements
& convex 

hull

Extreme Point
Method

representation
conversion

Representation
Conversion

Double
Descriptions

Lexicographic
Reverse
Search

Exploit
partial

pairs/ lists?

Exploit
Symmetries?

sympol

Parallelization: message passing VS massively parallel GPU
15
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The Path Less Laden: Complexity Experiments

• mathematically equal 6= computationally equal

Γbin
N N = 5 6 7 8

Algorithm 2 1.3 s 11 s 150 s 3800 s

Algorithm 3 1.6 s 45 s 3000 s 36000 s

Algorithm 4 1.4 s 23 s 2000 s 25000 s

• Algorithm 2 uses substitution of conditional entropies into lower dimensional

forbidden minor set to get inequality representation.

• Algorithm 3 & 4 work with non-isomorphic matroid list and remove minors (4:

minor checking, 3: using 2’s inequalities) to get extreme representation.

17



The Path Less Laden: Complexity Experiments

Rate Region 2-level-3-encoder 3-level-3-encoder

Algorithm 6 46 s 3600 s

Algorithm 7 2.9 s 47 s

Algorithm 8 2.7 s 35 s

• Algorithm 6: uses algorithm 2 to get inequalities of inner bound, appends rate

region equalities/inequalities, and projects using Fourier Motzkin. (inequality

based)

• Algorithm 7 & 8 : adds rate regions ineq.s & eq.s to alg. 3 and 4. inner bound

extreme rays via steps of double descriptions, then projects

total time winners are not always concatenation of the winners at each stage

18



The Path Less Laden: Complexity Experiments

19



The Path Less Laden: Moving Forward

• There is an absurd amount of symmetry in these problems!

– Labeling of variables, but also

– Shannon is only one inequality! conditional mutual info ≥ 0

• Key factor in the computation is exploiting the known symmetry to ease the

computation

• 2010 Diploma Thesis from Thomas Rehn Univ. Magdeburg (now at Uni. Rostock)

– sympol

– “representation conversion up to symmetries”. D. Bremner & A. Schurmann

• Also, given that there is no unique ”best path” and ”best representation”, yet a

rich theory regarding which algorithms are good for which structures, need parallel

tools that try the right candidates out then select which ones finish first

– area of active software development (what our team is developing)

• given proof nature of results, need infinite precision arithmetic

20



The Path Less Laden: Moving Forward

What we envision:

• Polyhedral Computation Package

• Entropy Vector Bound Package

• Rate Region Package

Would you want to use this? Please tell me what you think about this, as well as any

useful features I may have missed, after the talk.

21
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Structure of Γ̄∗4:

• ....Okay.... so, contradiction shows it’s not polyhedral. (Matúš ISIT 2007.)

• But, how bad is it?

• In Matúš 1995 Conditional Independence Relations Paper:

– series showed which Γ4 faces have entropic point in relative interior, but also

– Lemma 4: Gap between Shannon & Ingleton: 6 “pyramids”

Pij := Γ4 ∩ {Ingletonij ≤ 0}. Also, P̄∗ij := Γ̄∗4 ∩ {Ingletonij ≤ 0}
∗ Only one of the 6 Ingletons can be violated at once

Γ4 = I ∪ ∪ijPij Γ̄∗4 = I ∪ ∪ijP̄∗ij (4)

∗ Each of the Pyramids Pij : 1 non entropic extreme ray and 15 binary entropic

extreme rays

• What can we infer about P̄∗4 ∩ {Ingletonij ≤ 0} from these ingredients?

23



Structure of Γ̄∗4: Hey, maybe it’s not so bad

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

2 2 3 2 3 3 4 2 3 3 4 4 4 4 4
1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 2 2 1 1 2 2 2 2 2 2
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 0 1 1 2 1 2 1 2 1 2 2 2 2 2
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 2 1 2 2 3 1 2 2 3 2 3 3 3
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

0 0 0 1 0 0 0 1 0 0 0 �1 0 0 0
�1 0 0 0 1 0 0 0 1 0 0 0 �1 0 0
�1 0 1 0 0 0 0 0 1 0 �1 0 0 0 0
�1 0 1 0 1 0 �1 0 0 0 0 0 0 0 0
0 �1 0 0 0 1 0 0 0 1 0 0 0 �1 0
0 �1 1 0 0 0 0 0 0 1 �1 0 0 0 0
0 �1 1 0 0 1 �1 0 0 0 0 0 0 0 0
0 0 0 �1 1 1 �1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 �1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 �1 1 1 �1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 �1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 �1 1 1 �1
0 0 0 0 0 0 0 0 0 0 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 �1 1
1 1 �1 0 �1 �1 1 0 �1 �1 1 1 0 0 0

• Drop/Project out,

e.g. H(X1) from

Pij : the bad ray falls

into the conic hull of

the good ones =⇒
π\AP̄∗4 = π\APij
• happens if you

drop any one of

the 10 entropies

hA ∈ Ingletonij

• Dropping this entropy

makes π\AP̄∗ij ={
h\A|Ah\A ≤ b

}

polyhedral

24



Structure of Γ̄∗4:

• Implication: for any A s.t. hA ∈ Ingletonij , one way to express P̄∗i,j is

P̄∗i,j =




h ∈ R15

∣∣∣∣∣∣∣∣

Ah\A ≤ b (= Shannon)

hA ≥ glow(h\A)

hA ≤ gup(h\A)





(5)

• Sign of hA ∈ Ingletonij =⇒ one of glow(h\A) or gup(h\A) from Ingletonij = 0

• E.g. A = {1} =⇒
glow(h\1) = −h2 + h12 + h23 + h13 − h123 + h14 + h24 − h124 − h34

The problem of determining Γ̄∗4 is equivalent, e.g., to determining a

single nonlinear function gup : π\1P12 → R+

gup(h\1) := max
h1 |

[
h1,hT\1

]T
∈Γ∗4∩{Ingleton12≤0}

h1

(the solution to an optimization problem)

25



Structure of Γ̄∗4: Example

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

h1 axis

h2
 a

xi
s

 

 

[2;1;V] = r23
1  + r24

1 +r1
2

[1; 2; V] = r13
1  + r14

1 +r2
2

Ingleton violate extreme ray: 
f34 = f(’1100’) = [2; 2; V]

Matus s = 7

Matus s = 2

ZhangïYeung
Matus s = 1

Ingleton

4 atoms uniform
[4ï3*log2(3)/2; 4ï3*log2(3)/2; V]

[*;*; V] satisfy the follow ten conditional independent relations L12|�
34 (Matus,99,CPC):

(12|3), (12|4), (34|�), (12|34), (1|34), (2|34), (1|234), (2|134). (3|124), (4|123)
where V = [3;2;3;3;4;2;3;3;4;4;4;4;4]
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Structure of Γ̄∗4: Dropping h123

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

2 2 3 2 3 3 4 2 3 3 4 4 4 4 4
1 0 1 1 1 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 2 2 1 1 2 2 2 2 2 2
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
1 0 1 1 2 1 2 1 2 1 2 2 2 2 2
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 2 1 2 2 3 1 2 2 3 2 3 3 3
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

h1 h2 h12 h3 h13 h23 h123 h4 h14 h24 h124 h34 h134 h234 h1234

0 0 0 1 0 0 0 1 0 0 0 �1 0 0 0
�1 0 0 0 1 0 0 0 1 0 0 0 �1 0 0
�1 0 1 0 0 0 0 0 1 0 �1 0 0 0 0
�1 0 1 0 1 0 �1 0 0 0 0 0 0 0 0
0 �1 0 0 0 1 0 0 0 1 0 0 0 �1 0
0 �1 1 0 0 0 0 0 0 1 �1 0 0 0 0
0 �1 1 0 0 1 �1 0 0 0 0 0 0 0 0
0 0 0 �1 1 1 �1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 �1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 �1 1 1 �1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 �1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 �1 1 1 �1
0 0 0 0 0 0 0 0 0 0 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 �1 1
1 1 �1 0 �1 �1 1 0 �1 �1 1 1 0 0 0

P̄∗12 =





Ah\123 ≤ b (= Shannon)

h123 ≥ glow(h\123)

h123 ≤ gup(h\123)





glow(h\123) = −h1−h2 +h12 +h23 +

h13 + h14 + h24 − h124 − h34

The problem of determining Γ̄∗4 is

equivalent, e.g., to determining a

single nonlinear function:

gup : π\123P12 → R+

gup(h\123) := max[
h123,hT\123

]T
∈P̄∗12

h123

E.g. Shannon says gup(h\123) ≤ min{h2|1 + h13, h2|3 + h13, h1|2 + h23, h1234}
The lists of non-Shannon inequalities make the list of linear equations in the min larger.
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The Case for Non-Polyhedral Tools:

Since Γ̄∗N is a non-polyhedral convex cone:
• Need a tool that is not limited to (tightening of) polyhedral bounds

• Need a tool to handle non-linear codes!: SN ( Γ̄∗N ∀N ≥ 4
– Bye bye (linear) representable matroids. more general matroids promising path,

but:

∗ a pain to enumerate (list gigantic and unknown N ≥ 10)

∗ discrete =⇒ conic hulls & rep. conv. nec. for REV. also expensive

∗ algebraic matroids are far less understood than representable. other tools?

Extreme rays of Γ̄∗N and ∩ correspond to efficient codes, hence:
• Want to parameterize the EVs and PMFs on boundary of Γ̄∗N

– (esp. new extreme rays not shared with Shannon)

Information geometry:

• endows differential geometric structure to set of joint PMFs (parameterizations!)

• coord.’s flatness & certain affine sets = familiar properties

– marginals, independence, conditional independence

• studies divergences (incl. KL) & projections that are easily related to entropy

Hence, information geometry seems a potential candidate to deal with these questions
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(Formal) Introduction to Information Geometry [20] – Notation

• Overall idea: treat family of probability distributions as a differentiable manifold:

p(x; ξ) is parameterized by ξ

• Endow w/ Riemannian metric (inner product between Tangent vectors) given by

Fisher Information Matrix gi,j(ξ) = Eξ[∂i`ξ∂j`ξ] w/ `ξ = log p(x; ξ), ∂i = ∂
∂ξi

.

• Select α-affine connections ∇(α) such that
〈
∇(α)
∂i
∂j , ∂k

〉
= Γ

(α)
ij,k

Γ
(α)
ij,k = E

[(
∂i∂j`ξ +

1− α
2

∂i`ξ∂j`ξ

)
(∂k`ξ)

]
(6)

• purpose of affine connection: define parallel translation Πp,p′ : Tp → Tp′ to

correspond tangent vectors along curves γ : [a, b]→ P

Πγ(t),γ(t+dt)(X(t)) =
∑

ijk

{
Xk(t)− dtγ̇i(t)Xj(t) (Γij,k)γ(t)

}
(∂k)γ(t+dt) (7)

• Curve w/ tangent vector transported by parallel transl. w/ ∇(α) is ∇(α) geodesic

• If there is a coordinate system in which every parallel translation under ∇(α) leaves

coefficients in Tangent vector unchanged, the manifold is said to be α-flat, and

associated coordinate system is an affine coordinate system.

• ∇(α) has property 〈X,Y 〉p = 〈Π(α)
p,p′(X),Π

(−α)
p,p′ (Y )〉p′
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(Formal) Introduction to Information Geometry [20] – Parallel Translation

Introduction to differential geometry Geometric structure of statistical models and statistical inference

Affine connection

Πp,p� ((∂j)p) = (∂j)p� −
�

i,k

(dξi(Γk
ij)p(∂k)p� )

Yunshu Liu (ASPITRG) Introduction to Information Geometry 28 / 75∇∂i∂j =
∑

k

Γij,k∂k Γij,k = 0 if “flat” (8)
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(Formal) Introduction to Information Geometry [20] – Information Projection

∇(−α)
fla

t s
ub

man
ifo

ld
∇(−α)geodesic∇(α) geodesic

pX

q∗

q

D(α)(pX||q) = D(α)(pX||q∗) + D(α)(q∗||q)
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(Informal) Introduction to Information Geometry [20] – Examples: Coordinates

m-coordinates:

η =
[
pX(vi1,1, . . . , viN ,N )

∣∣∣ ik ∈ {2, . . . , |Xk|}, k ∈ {1, . . . , N}
]

e-coordinates:
∏N
n=1 |Xn| − 1 elements take the form

θ =


log

(
pX(vi1,1, . . . , viN ,N )

pX(v1,1, . . . , v1,N )

) ∣∣∣∣∣∣
ik ∈ {2, . . . , |Xk|},
k ∈ {1, . . . , N}




m-autoparallel submanifold (affine subset of m-coords) fix A,b all η of the form

η = Ap+ b (9)

e-autoparallel submanifold (affine subset of e-coords) fix A,b all θ of the form

θ = Aλ+ b (10)

properties of affine sets =⇒ intersections also affine, thus e/m affine closed under

intersection.

e-geodesic/m-geodesic: one dimensional affine manifolds
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(Informal) Introduction to Information Geometry [20] – Examples: Affine Sets

Examples of e-autoparallel submanifold:

• Set of joint distributions pX,Y s.t. X, Y indep.

• Set of joint distributions pX,Y,Z s.t. X,Y ,Z indep. (etc)

• Set of joint distributions s.t. X ↔ Y ↔ Z

Examples of m-autoparallel submanifold

• Set of joint distributions pX,Y with a particular marginal distribution pX

• Set of joint distributions pX,Y with a particular marginal distributions pX , pY
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(Informal) Introduction to Information Geometry [20] – Examples: Projections

• e-flat submanifold: set of all product distributions

E0 =

{
pX

∣∣∣∣∣pX(x1, . . . , xN ) =
N∏

i=1

pXi(xi)

}
(11)

• m-flat submanifold: set of joint distributions with given marginals

M0 =



pX

∣∣∣∣∣∣
∑

x\i

pX(x) = qi(xi) ∀i ∈ {1, . . . , N}



 (12)

• Information Projections & Pythagorean Relation:

q∗ = arg min
q∈E0

D(pX||q), D(pX||q) = D(pX||q∗) +D(q∗||q) ∀q ∈ E0 (13)

q∗ = arg min
q∈M0

D(q||pX), D(q||pX) = D(q∗||pX) +D(q||q∗) ∀q ∈M0 (14)
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Information Geometry [20] – What has it been used for?

• re-interpretation of EM algorithm [20]

• acceleration of Blahut Arimoto algorithm [21]

• learning algorithms in Neural Networks [22]

• analysis of Belief propagation & Turbo Decoding [23, 24, 25, 26]
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Decoupling Constraints & Improving Ingleton w/ Binary Inner Bound

gup(ho\123) = max
h∈P̄∗12

∣∣∣h\123=ho\123

h123≥ max
αk≥0, X , pkX |

∑
k αkh\123(pkX)=ho123

∑

k

αk h123(pkX)

= max
αk≥0, X , {pkXA |A⊂[4]}

∣∣∣∑k αkH(pkXA
)=hoA,

∑
Ac p

k
X=pkXA

∀A⊂[4]

∑

k

αkH(pkX123
) =

max

αk ≥ 0,X ,

pkXA |A 6= {123}, [4]}

∣∣∣∣∣∣∣∣∣∣∣
∑
k αkH(pkXA

) = hoA

∃pkX ,
∑
Ac pkX = pkXA

max

pk
X123

,pk
X

∣∣∣∣∣∣∣∣∣∣∣∣

∑
Ac pkX = pkXA

,

∑
k

αkH(p
k
X ) = h

o
[4]

∑
k

αkH(p
k
123)

(Think red term is actually equality. Matúš?) If we restrict domain to π\123Φ4, restrict

to a single fixed non-zero α k = 1 and X = {0, 1}, then outer optimization has

calculable finite # of points in feasible set [27]. Relies on handy m-affine

re-parametrization that decouples the marginal constraints

qA = P[XA = 1|A|] pA(xA) =
∑

C|A⊆C⊆I(xA)

(−1)|C|−|I(xA)|qB (15)

which makes hA = f({qB|B ⊆ A}) and turns solving inner optimization into only two

parameter optimization problem: q123 and q1234, i.e. can calculate this lower bound for

gup.
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Decoupling Constraints & Improving Ingleton w/ Binary Inner Bound

Why this may be a pretty good bound:

• All entropic extreme rays of P12 (Shannon rays on bottom of pyramid) are binary.

• Many/most Ingleton violating constructions have made use of non-unif binary r.v.s

• DFZ 4-atom conjecture about maximal Ingleton violation.

Moving forward

• The decoupling trick can be placed in an information geometric framework and

generalized beyond binary.

• Inner optimization is almost convex (only one convex equality constraint is the

problem). Just a little more transformation?
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Structure of Γ̄∗4: Example

0 0.5 1 1.5 2 2.5 3 3.5 4
0
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2.5
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3.5
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h1 axis

h2
 a

xi
s

 

 

[2;1;V] = r23
1  + r24

1 +r1
2

[1; 2; V] = r13
1  + r14

1 +r2
2

Ingleton violate extreme ray: 
f34 = f(’1100’) = [2; 2; V]

Matus s = 7

Matus s = 2

ZhangïYeung
Matus s = 1

Ingleton

4 atoms uniform
[4ï3*log2(3)/2; 4ï3*log2(3)/2; V]

[*;*; V] satisfy the follow ten conditional independent relations L12|�
34 (Matus,99,CPC):

(12|3), (12|4), (34|�), (12|34), (1|34), (2|34), (1|234), (2|134). (3|124), (4|123)
where V = [3;2;3;3;4;2;3;3;4;4;4;4;4]
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Casting Entropic Vectors as Information Projections

Easy to relate Shannon entropy to rel. entropy/ KL Divergence:

D(pX||U|X |) =
∑

x∈X
pX(x) log2

(
pX(x)

1/|X |

)
(16)

= log2(|X |)−H(pX) = H(UX )−H(pX) (17)
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Casting Entropic Vectors as Information Projections

Next consider the family of distributions

Hi :=

{
pX

∣∣∣∣p(X) =
1

|Xi|
q(X\i), some q(X\i)

}
(18)

Observe:

• UX ∈ Hi
• Hi is both an e-affine and m-affine submanifold.

• Defining q∗Hi(pX) = arg minq∈Hi D(pX||q), have Pythagorean relation:

D(pX||UX ) = D(pX||q∗Hi(pX))︸ ︷︷ ︸
log2 |Xi|−H(Xi|X\i)

+ D(q∗Hi(pX)||UX )︸ ︷︷ ︸
log2 |X |−log2 |Xi|−H(X\i)

(19)

(erm... H(X) = H(Xi) +H(X\i|Xi) tyco)

Moving this around, we have

H(X\i) = D(pX||q∗Hi(pX))−D(pX||UX ) + log2 |X | − log2 |Xi| (20)
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Casting Entropic Vectors as Information Projections

Generalizing this idea, consider the family of distributions

⋂

i∈Ac
Hi =

{
pX =

q(XA)∏
i∈Ac |Xi|

}
(21)

Observe:

• UX ∈
⋂
i∈Ac Hi

• ⋂i∈Ac Hi is both an e-affine and m-affine submanifold

• Defining q∗A(pX) = arg minq∈⋂i∈Ac Hi D(pX||q), have Pythagorean relation:

D(pX||UX ) = D(pX||q∗A(pX))︸ ︷︷ ︸∑
i∈Ac log2 |Xi|−H(XAc |XA)

+ D(q∗A(pX)||UX )︸ ︷︷ ︸
log2 |X |−

∑
i∈Ac log2 |Xi|−H(XA)

(22)

(erm... H(X) = H(XA) +H(XAc |XA) tyco)

From which we observe that

H(XA) = D(pX||q∗A(pX))−D(pX||UX )−
∑

i∈Ac
log2 |Xi|+ log2 |X | (23)
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Casting Entropic Vectors as Information Projections

Defining the set function (then stack into a vector d)

dA := min
q∈⋂i∈Ac HiD(pX||q) = D(pX||qA(pX)) ∀A ( {1, . . . , N} =: [N ] (24)

and d∅ = D(pX||UX ). It is evident from the relation we derived

H(XA) = D(pX||q∗A(pX))−D(pX||UX )−
∑

i∈Ac
log2 |Xi|+ log2 |X | (25)

that

hA = dA − d∅ −
∑

i∈Ac
log2 |Xi|+ log2 |X | ∀A ( [N ] (26)

and h[N ] = −d∅ + log2 |X |, thus we can express entropic vector in terms of d via

h(d) = Ad + b (27)

Region of entropic vectors is affine transformation of region of simultaneous

divergences between submanifolds Hi and their intersections!
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Casting Entropic Vectors as Information Projections

pX

H1 H2

H3

d12

d2
d1d∅

d13d23 d3
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Information Geometric Properties of Distributions on Shannon Facets

p

m-geodesicm-geodesic

e-geodesic

→
ΠE⊥

A∪B
(p)

→
ΠE↔,⊥

A,B
(p)

E↔,⊥
A,B

E⊥
A∪Be-autoparallel submanifold

e-
au

to
p
ar

al
le

l
su

b
m

an
if
ol

d

entropy submodularity

hA + hB ≥ hA∪B + hA∩B

E↔,⊥A,B =
{
θ
∣∣∣pX = pXA\B|XA∩BpXBpX(A∪B)c

}

E⊥A,B =
{
θ
∣∣pX = pXA∪BpX(A∪B)c

}

• Shannon outer bound:

I(XA;XB|XC) ≥ 0

• Hence, on the Shannon facet:

I(XA;XB|XC) = 0

• means XA ↔XC ↔XB
• This is an e-autoparallel submani-

fold of pXA∪B∪C !

• =⇒ those pXA∪B∪C on this

boundary (affine set) of entropy

have a parameterization in which

they are also affine (known A,b)

• Sometimes X 6= XA∪B∪C , so

also need the structure having a

particular marginal pXA∪B∪C (m-

autoparallel)

• mutually dual foliations
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Left: (0000)(0110)(1010)(1111) in m-coordinate

Right: (0000)(0110)(1010)(1111) in e-coordinate

α = 0.25,β = γ = 0.5

Hyperplane E : I(x3, x4) = 0

DFZ 4 atom conjecture(point)

where α = β ∗ γ

The whole 3D space
p(0000) = α
p(0110) = β − α
p(1010) = γ − α
p(1111) = 1 + α− γ − β

β = γ = 0.5

4 atoms uniform(point)

Matus’s curve in ISIT07(line)
α = β ∗ γ, γ = 0.5

α ≈ 0.35,β = γ = 0.5

Given marginals(line)

p(x3 = 0) = γ

p(x4 = 0) = β

Marginal distribution of x3 and x4
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Structure of Γ̄∗4: Matúš Notation for Pij
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1 , r124

1 , r134
1 , r234
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V̄K
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V̄R

= (V̄M , V̄K , V̄R, r∅1 , f34)
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f34

V̄M

V̄N

r∅1

where V̄M = (r13
1 , r14
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V̄P = (V̄M , V̄K , V̄R, r∅1 , f34)

Hyperplane E : I(x3, x4) = 0
where α = β ∗ γ

β = γ = 0.5
Given marginals

α = 0.25,β = γ = 0.5
4 atoms uniform

DFZ 4 atom conjecture
α ≈ 0.35,β = γ = 0.5

Hyperplane Ingleton12 = 0

Ingleton12 > 0

Ingleton12 < 0
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