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e Entropy (Shannon Entropy)
Zp ) log p(a

e Joint Entropy
H(X,Y)=-> plz,y)logp(z,y)

L,Y

e In information theory, entropy is the measure of the uncertainty contained
in a discrete random variable, justified by fundamental coding theorems.
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In addition to Entropy, we also have:
Conditional Entropy
HX|Y)=H(X,Y)—H(Y)
Mutual Information
I(X;Y)=H(X)+HY)—-H(X,Y)
Conditional Mutual Information

[(X;Y|Z)=H(X,Z)+H(Y,Z)— H(X,Y,Z) — H(Z)

These are called Shannon’s information measures.

Any Shannon’s information measure is a linear combination of joint en-
tropies.



H (Xl,XZ)

H(X,|X,) /\ H(X5|X))

H(X)) H(X>)
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e Hu Guoding (1962) showed that for every identity of Shannon’s informa-
tion measures, there is a corresponding set-theoretic identity.

e For example,
H(X1,X2) = H(X1) + H(X2) — I(X1; X2)
in information theory corresponds to
(X1 U Xo) = pu(X1) + p(X2) — p(X1 N Xo)
the Inclusion-Exclusion formulation in set theory, where

H/I <+
D

D C =

SRS
| <

1t is any set-additive function, and X is a set variable corresponding to
random variable X.
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Some questions:

1. For every set-theoretic identity, does there exist an information-theoretic
identity? If so, we can employ tools in set theory to study information

theory.

2. What would
u(€2) = p(A) + p(A°)

correspond to?
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The |-Measure p*

To tackle
u(€2) = p(A) + p(A°),

need to fix n, the number of random variables, and let Q = |J;_, X;.

Then the set of joint entropies of X7, Xs, .-, X,, defines a unique signed
measure (°, called the [-Measure, which is consistent with Shannon’s
information measures.

This establishes the set-theoretic structure of Shannon’s information mea-
sures.

As an example, for n = 2 and A = X},

n(Q) = p(A) + p(A°)

corresponds to
H(Xq,X5)=H(X1)+ H(X2|X1).



Information Diagrams

[(X1; X5; X5)

[(X; X5 X3)

H (X))
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U* can be Negative

e /1 is nonnegative for n = 2.

o For n =3, p*(X1 N Xy N X3) =I(X1; X2; X3) can be negative.

Example 3.10
e X, X5 —ii.d. binary r.v.’s uniform on {0, 1}
o X3 = X;+ X5 mod 2
e [asy to check:
— H(X;) =1, for all ¢

— X1, X9, X3 are pairwise independent, so that
H(X;,X;)=2and I(X;;X,;)=0, forall i # j

— Under these constraints, I(X1; X2; X3) = —1.



X2

The information diagram for Example 3.10



Example 3.15 (Imperfect Secrecy Theorem) Let X be the plain text, Y
be the cipher text, and Z be the key in a secret key cryptosystem. Since X can
be recovered from Y and Z, we have

H(X|Y,Z)=0.
Show that this constraint implies

I[(X:Y) > H(X)— H(2).

Remark Do not need to make these assumptions about the scheme:
e HY|X,Z)=0
e [(X;7)=0



VII. Furure WoRrk

We now address some issues for further investigations.

a) We have constructed a real measure u* on &,
which we call the /-Measure, from the joint distribution
of the random variables involved. It should be pointed out
that not every real measure x on % is an /-Measure. For
w to be an I-Measure, it is necessary that the value of u
on the elements of %, which correspond to Shannon’s
information measures are nonnegative. However, given
such a measure, it is not clear whether we can always find
a joint distribution for the random variables such that
Shannon’s information measures on these random vari-
ables agree with the value of u on the corresponding
elements of #. This is a very fundamental question to be
answered.

b) The value of p* on the elements of % that corre-
spond to Shannon’s information measures are always non-
negative. A question of interest is: What are the elements
of % on which the value of u* are always nonnegative?
The more general question of what linear combinations of

entropies are always nonnegative was raised by Te Sun
Han [13].
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Markov Chains

e For a Markov chain of any length n, the information diagram can be
displayed in two dimensions because certain atoms can be suppressed.

e The values of u* on the remaining atoms correspond to Shannon’s in-

formation measures and hence are nonnegative. Thus, ©* is a measure.
(Kawabata and Y, 1992).

e This theme can be extended to Markov random field. (Y, Ye and Lee,
2002).

X X X X

1 2 n-1 n
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In his book [7], Abramson uses 1nterest1ng flgures to helo
’_their readers to memorize varlous relatlonshlo amonw amounts of
1nformat10n For example ‘the relationshlps among H(X), H(Y)

_ H(YIX) H(YIX), H(X,Y) and I(X;Y) are precisely expressed in the
bquantltatlve relatlonshlps of areas [Fig. A. 1] The consistencies
'on add1t1v1t1es that each form of amount of information has- an
aspect as ‘a measure. However the situation is not so 31mple when

‘we con31der three random'variables X, Y and Z. Plctures_ln [Fig. A.é]

"which also from [7] exactly express the relationships such as

I(X;Y12) =H(X12)-H(X|Y,2) . . C(A.1)

However there appears in this cace a quantlty I(X Y Z) H(X Y,Z)-

H(X Y)-H(Y, z)-H(Z, X)+H(X)+H(Y)+H(Z) > Whose meaning is not easy’

' to understand. In fact I(X;Y;Z) is not always positive.

Our major interest is not in the generally correlated random

HO,Y)

Flg A1

' Relatlonshlps among 1nformat10n (Abramson [7])

s
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;Jwéfwénf‘té define4aﬁmeésﬁfeup.onﬁfhé B§Q1éan'éigebra éeneréted by
'il;‘;:ih,‘wﬁiCh we denote by & , such'thaﬁ thefeéﬁalities
B -'l4CX#);’]uCXA)'. e
H(XAlXB)"“'f’»U?A“yé)- o (A.4)
Tsxe)= p(RA X8 ) s
I(XA}XB\X@‘_}*(%“YB”YO) . (1.6)
-aré>satisfied. ' -
Neit we_define cohcepts and prove some'lemmas.
" Def. A.1. o |

Non-empty A€B is called p-atom if it is not R—UV Xv and for any

A N~
2
BEp, B2A or BnA=¢. )

An p-atom is illustrated in [Fig. A.8]. It is noted that a p-atom
is'not a usual atom in the Boolean algebraic sence. It is really the
stuff (not empty) set.

- Lemma A.l._

If B¢Bis not empty and not Rﬁ—QZX; ,» it is expressed uniquely
as @ finite direct sum of p—atom. l o '
[proof]
This is a Boolean algebraic result. By the condition (A.2) many

atoms vanishes. [Fig.‘A.8]_show the situation.

?zg_fs o A = as :/Sﬂ) f\(x—h %-D

Fig. A.8
~ An p-atom



Fig. 1.

The Structure of the /-Measure of a Markov Chain X,

Tsutomu Kawabata and Raymond W. Yeung

Abstract—The underlying mathematical structure of Shannon’s infor- Xi X3
mation measures was studied in a recent paper by Yeung, and the
I-Measure pu*, which is a signed measure defined on a proper o-field 7,
was introduced. The /-Measure is a natural extension of Shannon’s
information measures and is uniquely defined by them. They also
introduced as a consequence the /-Diagram as a geometric tool to
visualize the relationship among the information measures. In general,
an /-Diagram for n random variables must be constructed in n-1
dimensions. It is shown that for any finite collection of random vari- X, X,
ables forming a Markov chain, u* assumes a very simple structure which
can be illustrated by an /-Diagram in two dimensions, and u* is a
nonnegative measure.

Fig. 2.

Index Terms—Shannon’s information measures, /-Measure, J-Di-
agram, Markov Chain. Xy X4

Fig. 3.

2) I(X,; X)) =1(X,; Xy) + I(X,; X3| X,) +
(X, X, | X)) + I(X;; X5 X, Xo),
3) H(X,, X,| X,, X3) = H(X,| X, X;3) + H(X, | X3),
4) H(X,| X,, Xy) = H(X,| X,, X,) + I(X,; X5] X, X,).



Theorem I: Let X, i=1,-+,n,n=2, be collection of
random variables and -( X,)-. Then I(X,; - ; X,) = I(X,; X,).

Proof: We shall prove the theorem by induction. It is clear
that it is true for n = 2. Assume it is true for some n = 2. Then

I(X); X330 3 X))

=I1( X5 X33 * 5 Xp0) = 1( X5 X350 5 X400 X))
By the induction hypothesis,

I(X); X33 000 5 Xp0) = 1( X35 Xayy)-
Now by Theorem 5 in [1],
I(X; X350 5 X | X3)
= gplxz = X% 1(X); X33+ 5 Xpir | X3 = X3).

Conditioning on X, = x,, the random variables X,, X, ",

X, 4 still form a Markov chain. By the induction hypothesis, we
conclude that
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proving the theorem.
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Theorem 1: Let X, i=1,++,n,n=2, be collection of
random variables and -( X;)-. Then I( X,; --*; X,) = I( X,; X,).

Proof: We shall prove the theorem by induction. It is clear
that it is true for n = 2. Assume it is true for some n = 2. Then

(X Xy 5 Xp4y)

=I( X5 X35 i Xpay) = 1( X5 X500 5 X0, X))
By the induction hypothesis,

(X X35 005 X 00) = 1( X5 X))
Now by Theorem 5 in [1],
(X X550 5 X | X3)
= gp[xz =X I(X); X35 5 Xpur | Xz = X3).

Conditioning on X, = x,, the random variables X,, X, ",

X, 4 still form a Markov chain. By the induction hypothesis, we
conclude that

I(X,; X33 Xyl X =x) = I(Xl;xn-o»l | X; = x;).
Thus,
I(XI;XS; o 3 Xnrl Xz)

- ZP[Xz — lel(xl; Xps1| X3 = x;)
x2

=I(X,; Xpi1 1 X3) =0,

proving the theorem.
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Preliminaries

Np=A{1,...,n}
QO ={X;,i e N,,}; X; is a discrete random variable.
For n random variables, there are 2" — 1 joint entropies.
E.g.. n =3, the 23 — 1 = 7 joint entropies are
H(X1), H(X2), H(X3), H(X1, X2), H(X2, X3),

H(X1, X3), H(X1, X2, X3)
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Preliminaries

Let Xo = (Xi,1 € a). E.g., X123y = (X1, X2, X3).
Define Ho(a) = H(X,). E.g., Ha({1,2,3}) = H(X1, X2, X3).
Hq : 2V» — R is set function with Hq(¢) = 0.

Hg is called the entropy function of (.



The Entropy Function as a
Polymatroid

e It is well-known that for any 2, Hq satisfies the following polymatroidal
axioms. For any «, 3 C N,

(P1) Hq(¢) = 0;
(P2) Hqo(a) < Ho(P) if a C 5;
(PS) HQ(OZ) + Hg(ﬂ) > HQ(O& M 6) -+ HQ(OZ U ﬁ)
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The Basic Inequalities

e The polymatriodal axioms are equivalent to the nonnegativity of
Shannon’s information measures, called the basic inequalities.

e That is,
entropy > 0
mutual info > 0
conditional entropy > 0
conditional mutual info > 0
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The Region 1"

Fix n. For each €2, Hy defines a vector in 'H,, = R2" 1.

'H,, is called the entropy space for n r.v.’s

A vector
h = (hy : a € 2\

in H,, is called entropic if it corresponds to the entropy function Hq for
some ().

Define the region in H,,:

[ ={h € H, : h is entropic}
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Entropy Inequalities:
A Geometric View

e An entropy inequality has the form f(h) > 0.
e f(h) > 0 always holds if and only if

I'"c{heH,: f(h) >0}
e In fact, f(h) > 0 always holds if and only if
I c{heH,:f(h)>0}

because {h € ‘H,, : f(h) > 0} is closed.



f(h) > 0 Always holds

\ .



f(h) > 0 Does Not Always holds

f(h) > 0
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The Region 1',,

e Define the following region in H,:

I',, = {h € 'H,, : h satisfies the basic inequalities}

e I'" C I, since the basic inequalities are satisfied by any Xi,..., X,,.

e An entropy inequality f(h) > 0 is called a Shannon-type inequality if it
is implied by the basic inequalities, or

I'y c{heH,: f(h)>0}.
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Machine-Proving of
Entropy Inequalities

The geometric view of entropy inequalities enables machine-proving of
entropy inequalities. The following applications have been developed:

1. ITTIP (Information-Theoretic Inequality Prover) at CUHK
(Y.-O.Yan and Y, 1996)

2. X tip at EPFL (Pulikkoonattu, Perron, Diggavi, 2007)

3. ITTP (Information-Theoretic Theorem Prover) at KAIST
(S.-Y. Chung, 2009)

ITIP and X tip are linear programming based, while ITTP is axiom based.
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IsT* =T,

The answer is NO iff there exists an entropy inequality g(h) > 0 which

cuts between I',, and fz. Such an inequality is called a non-Shannon-type
inequality.

It is known that

1. T =T,
2. I £ Ty, but Ty = I's

Therefore, unconstrained non-Shannon-type inequalities can exist only for
4 or more random variables.

In general,

° . _* °
— I'7 is neither closed nor convex, but I', is a convex cone.
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A Constrained Non-Shannon-Type Inequality
(LY97)

The following constrained inequality was discovered for any 4 random
variables (Zhang and Y, 1997):

If X1 1 XQ‘XS and X1 1 XQ, then

I(X3; Xy) < I(X3; Xa| X)) + T(X3; Xy]| Xo)

Under the constraint X; L X5, this is equivalent to the Ingleton inequality
in matroid theory:

H(Xy, X3) + H(X1,Xy) + H(X2, X3) + H(X2, Xy) + H(X3, Xy)
> H(X3)+ H(Xy) + H(Xy,Xo) + H(X1, X3, Xy) + H(X2, X3, Xy)

7Y97 says that a certain region on the boundary of I',, is not entropic.

However, it is not strong enough to imply that fz #+1'y.
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An Unconstrained Non-Shannon-Type Inequality
(£LY98)

e The following unconstrained non-Shannon-type inequality was discovered

for any 4 random variables (Zhang and Y, 1998):
[(Z;U) — 1(Z;U|X) — 1(Z;U|Y)

<

DO | = ~—

I(X:Y) + i[z(x; Z.U) + I(Y: Z,U)]

e This implies T, # I'4!
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Proof Idea of ZY98

For any X7, Xs, X3, X4, construct two auxiliary random variables X1, X,

by

P(X1,%2|x3,X4) P(X1,X2|x3,X4)

(X1, X2) +— (X3, Xy) — (X1, Xo)

Since (Xl,XQ,Xg,X4) ~ (Xl,XQ,Xg,X4), we have

H(X,) = H(X))
H(XlaXQ) — H(XlaXQ)
H(X17X27X3) — H(X17X27X3)

Using all these constraints and invoking the basic inequalities for 6 random
variables to obtain ZY98, which does not involve X, X5!

Can be proved by using ITIP.
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ITIP

. >> ITIP(C’H(XYZ) <= HX) + H(Y) + H(Z)?)
True

. >> ITIPCPI(X;Z2) = 02,°I(X;Z2lY) = 02,°I(X;Y) = 0?)
True

. >> ITIPCI(Z;U) - I(Z:UIX) - I(Z;UlY) <= 4
0.5 I(X:Y) + 0.25 I(X:ZU) + 0.25 I(Y:z0)’) —<— Z Y98
Not provable by ITIP \_
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From nicholas@cs.ubc.ca Tue Jul 7 23:04:11 1998

X400-Received: by /PRMD=ca/ADMD=telecom.canada/C=ca/; Relayed; Tue, 7 Jul
1998

8:03:59 UTC-0700

Date: Tue, 7 Jul 1998 8:03:59 UTC-0700

X400-0riginator: nicholas@cs.ubc.ca

X400-Recipients: non-disclosure:;

X400-Content-Type: P2-1984 (2)

X400-MTS-Identifier: [/PRMD=ca/ADMD=telecom.canada/C=ca/;980707080359]
Content-Identifier: 4429

X-UIDL: 900031892.048

From: Nicholas Pippenger <nicholas@cs.ubc.ca>

To: zzhang@milly.usc.edu, whyeung@ie.cuhk.edu.hk

MIME-Version: 1.0 (Generated by Ean X.400 to MIME gateway)

I have just seen your paper "On the Characterization of Entropy

Function via Information Inequalities" in the IEEE Transactions on
Information Theory. Please allow me to congratulate you on a most
beautiful result! I worked on the problem of whether \overbar{\Gamma}A*_n
= \Gamma_n during the 80s, without any success. 1 presented it as an open
problem at the SPOC (Specific Problems on Communication and Computation)
Conference 1in 1986--1 believe there were proceedings published by Springer,
but they seem to be out of print now.

It was wonderful to see your paper.

- Nick Pippenger



What Are the Laws of Information Theory?

Nicholas Pippenger
IBM Almaden Research Laboratory K51-801
650 Harry Road
San Jose, California 95120-6099

Shannon defined the entropy H(X) of a random variable X assuming values in a
finite set X' tobe — 3" 4 Pr(X = 2)log Pr(X = z). The entropy H(X,Y, Z) of a finite set
{X.,Y, Z} of random variables is defined by regarding the tuple (X.Y, Z) as a single random
variable. In information theory, one also deals with conditional entropies, like H(X | Y) =
H(X,Y) — H(Y); mutual informations, like I(X;Y) = H(X)+ H(Y) — H(X,Y); and
conditional mutual informations, like I(X;Y | Z) = H(X,Y)+ H(X,Z) - HX,Y,Z) —
H(Z). All identities and inequalities concerning these quantities, however, can be reduced
to ones involving only “plain” entropies, like H(X,Y,Z), by invoking these definitions.
The identities are known (see [H] and [R]). The problem posed here is to determine the
inequalities.

If { X }ier is a family of random variables, and if S C T', let Hg denote the entropy of
the subfamily {X,}secs. The resulting map H : 27 — R satisfies the following conditions
(known as the polymatroid azioms).

(1) Hs > 0 and Hy = 0.
(2) Hr < Hs if RC S.
(3) Hrus + Hrns < Hr + Hs.

These conditions are immediate consequences of the fact that the logarithm vanishes
at unity, is increasing and is concave. Are there any other conditions? If so, what are
they? If not, show that any function satisfying (1), (2) and (3) can be approximated arbi-
trarily closely by the entropies of some family of random variables. (I say “approximated

arbitrarily closely” to avoid the question of what happens on the boundary of the polytope
defined by (1), (2) and (3).)

[H] K. T. Hu, “On the Amount of Information”, Theory of Prob. and Appl., 7 (1962)
439-447.

[R] F. M. Reza, An Introduction to Information Theory, McGraw-Hill, New York, 1961.
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Other Non-Shannon-Type Inequalities
e Matus (1999) proved the Ingleton inequality under the constraints X; L
XQ’Xg and X2 1 X4‘X3 (Xl 1 X2 for ZY98)

e 7ZY98 have been further generalized by Makarychev et al. (2002), Zhang
(2003), and Matus (2007).

e In particular, Matus showed that fz is not a polyhedral cone, and hence
there exist an infinitely number of linear non-Shannon-type inequalities!

e Dougherty, Freiling and Zeger (2006) have discovered several tens of non-
Shannon-type inequalities by a search on a supercomputer.

Remark

e Matus (2007) also showed a fundamental property of I'*:
nt(cl(I'))) C T

l.e., I has a solid core.
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2-D Quasi-Uniform Array

e For a distribution p(x), a sequence x of length n is strongly typical if the
empirical distribution of x is approximately equal to p(x).

e Let p(z,y) be a joint distribution. The strongly typical sequences w.r.t.
p(x,y), p(x), and p(y) can be illustrated by a 2-D quasi-uniform array.
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each column has approximately the same number of dots (~ 27H (X)),
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n

nH(Y) 'y € S[Y] 5
@ ® ) .\
YnH(X) . . . K\E YnH(X.Y)
n
X E S[X](S ® ® ./ (X,Y) E T[)I?Y](S

e Each row has approximately the same number of dots (~ 277(1X)) and

each column has approximately the same number of dots (~ 27H (X)),

e Thus

gnH(XY) < gnH(X)onH(Y) o H(X,Y) < H(X)+ H(Y)

e Then the basic inequality I(X;Y) > 0 is about the unfilled entries in the
array.



3-D Quasi
uasi-Uniform Ar
ray

2nH(Z)
z c S
[Z]6
Z /
0 |
“ |
! |
! l
| |
! l
i ’
YnH(Y) ! :
| | ///////1/
yeS” : | /:2/55’::;/
e | %,
| |
| : 0Yo)
: ///L___
i

QRH)
x € S"
(X106



Quasi-Uniform Arrays and
Entropy Inequalities



Quasi-Uniform Arrays and
Entropy Inequalities

e For an n-dimensional quasi-uniform array, if all the “dots” are assigned
equal probabilities, then the projection on every lower dimensional plane
has a uniform distribution over its support.



Quasi-Uniform Arrays and
Entropy Inequalities

e For an n-dimensional quasi-uniform array, if all the “dots” are assigned
equal probabilities, then the projection on every lower dimensional plane
has a uniform distribution over its support.

e Do quasi-uniform arrays fully capture all constraints on the entropy tunc-
tion?



Quasi-Uniform Arrays and
Entropy Inequalities

For an n-dimensional quasi-uniform array, if all the “dots” are assigned
equal probabilities, then the projection on every lower dimensional plane
has a uniform distribution over its support.

Do quasi-uniform arrays fully capture all constraints on the entropy func-
tion?

YES. T. Chan (2001) showed that all constraints on the entropy function
can be obtained through quasi-uniform arrays, and vice versa.
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Entropy and Groups
(Chan-Y 2002)

e Let G be a finite group and G, G, ..., G, be subgroups of G.
o Let G, = Njca Gy, also a subgroup.

e A probability distribution for n random variables X, X5,..., X,, can be
constructed from any finite group G and subgroups G1, G, ..., G, with

G
Gal

H(Xa) = log

which depends only on the orders of G and G1,Go,...,G,.
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Entropy and Groups

e Substituting the joint entropies into any entropy inequality gives a group
inequality.

e For example, for any X4, X5,

H(X,)+ H(X2) > H(X1, X5)

corresponds to for any finite group G and subgroups G, G,

G G
G| G1 N Gy

G|
G|

log — + log —— > log

or

G||G1 NG| =] G1||G2|
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Non-shannon-Type
Group Inequalities

“Non-Shannon-type” group inequalities can be obtained accordingly.

For example, ZY98 can be written as

H(X1) + H(X1, X5) + 2H(X5) 3H (X1, X3) + 3H (X1, X4)
F2H (X4) +4H (X1, X3, X4) p <{ +3H (X5, X4) + H(X3, X3)
+H(Xs, X3, X4) +H(Xo, X4)

This corresponds to

IG1||G1 N Gs||G3l)? IG1 NG3]? |G NGyl
NGLPIGI NG NGyt p > < - |G N Gyl?|Ga NGl
|Ga N Gy N Gyl |G N Gy

It can be proved that the correspondence between entropy inequalities and
group inequalities is one-to-one.



Relation between Finite Group
and Quasi-Uniform Array



Relation between Finite Group
and Quasi-Uniform Array

e The distribution of the elements of a finite group among its subgroups
exhibits a quasi-uniform structure.



Relation between Finite Group
and Quasi-Uniform Array

e The distribution of the elements of a finite group among its subgroups
exhibits a quasi-uniform structure.
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Compatibility of Conditional
Independence

e The Implication Problem Is a given conditional independency implied by
a given set of conditional independencies?

e Example
X =Y —- 2

Y |y }:>XLZ

e A very basic problem in probability theory.
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Compatibility of Conditional
Independence

This is a subproblem of characterizing I'}, because a conditional indepen-
dence relation is just a hyperplane in H,,.

For example, X 1 Y|Z < I(X;Y|Z) = 0.

Thus the conditional independence problem is
A discrete problem imbedded in a continuous problem.

The more general p-representability problem was studied by Matus and
Studeny (1995).

n = 4 was settled by F. Matus (1999) by proving a constrained version of
the Ingleton inequality (non-Shannon-type).

Very hard for n > 4.
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Entropy and
Kolmogorov Complexity

Let K (-) denotes the Kolmogorov complexity of a collection of sequences.

Hammer et al. (2000) showed that there exists a one-to-one correspondence
between entropy inequalities and Kolmogorov complexity inequalities.

For example, for any X7, X5,
H(X,)+ H(X2) > H(X,, X2)
corresponds to for any two sequences x and v,

K(Qj'l) —+ K(ZCQ) > K(le,ﬂig)

“Non-Shannon-type” Kolmogorov complexity inequalities can be obtained
accordingly.
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Entropy and Network Coding

e For single-source network coding, the network capacity is completely char-
acterized by the maximum flows in the network.

e For multi-source network coding, the network capacity can be character-
ized by I'}.

e The problem has been studied by Y and Zhang (1999), Song, Y, and
Cai (2006). Yan, Y and Zhang (2007, 2012) finally obtained a complete
characterization (implicit) of the network capacity in terms of I'?.
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Entropy and Network Coding

Dougherty, Freiling and Zeger (2007) constructed the first multi-source
network coding example whose characterization of the network capacity
requires ZY98.

The construction is based on the Vamos matroid.

Chan and Grant (2008) proved a duality between almost entropy functions
and multi-source network coding problems.

Thus

Every constraint on the entropy function is useful in
some multi-source network coding problems!
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Secret Sharing

e Secret sharing in cryptography was introduced independently by Blakley
and Shamir (1979).

e Recently, Beimel et al. (2008) has applied ZY98 to obtain a new perfor-
mance bound in secret sharing.

e Secret sharing can be regarded as a special case of secure network coding
(Cai and Y, 2002).



MATRIX THEORY



Differential Entropy Inequalities



Differential Entropy Inequalities

e Differential Entropy

h(X) = / F(2)log f(z)da



Differential Entropy Inequalities

e Differential Entropy

= —/f(a?) log f(z)dx

e Joint Differential Entropy

h(X,Y) /f x,y)log f(z,y)dxdy



Differential Entropy Inequalities

e Differential Entropy

— / f(x)log f(z)dx

e Joint Differential Entropy
h(X,Y) /f x,y)log f(z,y)dxdy

e Chan (2003) showed that a differential entropy inequality is valid iff the co-
efficients of the random variables are balanced and its discrete counterpart
is valid.
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Balanced Entropy Inequalities

For example,
h(X|Y)=h(X,Y)—h(Y)>0

is not valid because the coeflicients are not balanced.

On the other hand,
I(X;Y)=h(X)+h(Y)—h(X,Y)>0
1s valid.

The coefficients in ZY98 are balanced, so it is also valid for differential
entropy.
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Gaussian Distribution

e Any (symmetric) positive definite matrix is a valid covariance matrix, so
that it defines the joint pdf of a Gaussian random vector

X=[X; Xo - Xn].

e Then |
h(X) =  log[(2me)" |K |

and for any subset a of {1,2,...,n},

1
h(X,) = 5 log |(2me)l®| K, |

where K, is the corresponding submatrix of K.
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Non-Shannon-Type Matrix Inequalities

e Substituting these joint differential entropies into the inequality

h(X1, Xa, .o, Xn) <Y R(X))

gives the Hadamard inequality
K| <][I&|=]]k

e Substituting these joint differential entropies into ZY98 gives

K1 || Ki2]| K3 || Ka|?| Ki3a]* | Ka34]
< | Kqi3|? | K14 | K| | Kas|| Koal

for all positive definite matrices.

e Many other “non-Shannon-type” inequalities of the principal minors of
positive definite matrices can be obtained this way.
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Principal Minor Inequalities

e Can all constraints on the principal minors of positive definite matrices
be obtained through differential entropy inequalities and the (Gaussian
distribution?

e Chan, Guo, and Y (2012) showed that this is the case for 3 x 3 positive
definite matrices.

e Previously, Hassibi and Shadbakht (2008) studied normalized Gaussian
entropy functions and obtained a characterization for 3 Gaussian random
variables.
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The von Neumann Entropy

The von Neumann entropy is an extension of the Shannon entropy to
quantum mechanics.

The strong subadditivity of the von Neumann entropy (analogous to the

basic inequalities for the Shannon inequalities) was proved by Lieb ad
Ruskai (1973).

Inspired by the discovery of non-Shannon-type inequalities, Pippenger
(2003) proved that for a 3-party system, there exists no inequality for
the von Neumann entropy beyond strong subadditivity.

Linden and Winter (2005) discovered for a 4-party system a constrained
inequality for the von Neumann entropy which is independent of strong
subadditivity.
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Concluding Remarks

The entropy function connects together a number of seemingly unrelated
fields in information sciences, mathematics, and physics.

There exist one-to-one correspondences among the entropy function, group
theory, Kolmogorov complexity, and network coding, suggesting that they
share the same underlying structure.

The relations between these fields need a deeper understanding. The
quasi-uniform array plays a central role.

“Non-Shannon-type” inequalities in different fields need further under-
standing.

Information theory is clearly an integral part of mathematics.



Can we get out of this
mess?



Facets of Entropy

Raymond W. Yeung*

October 4, 2012

Constraints on the entropy function are of fundamental importance in information theory.
For a long time, the polymatroidal axioms, or equivalently the nonnegativity of the Shan-
non information measures, are the only known constraints. Inequalities that are implied by
nonnegativity of the Shannon information measures are categorically referred to as Shannon-
type inequalities. If the number of random variables is fixed, a Shannon-type inequality can
in principle be verified by a software package known as I'TIP. A non-Shannon-type inequal-
ity is a constraint on the entropy function which is not implied by the nonnegativity of the
Shannon information measures. In the late 1990s, the discovery of a few such inequalities
revealed that Shannon-type inequalities alone do not constitute a complete set of constraints
on the entropy function. In the past decade or so, connections between the entropy function
and a number of subjects in information sciences, mathematics, and physics have been es-
tablished. These subjects include probability theory, network coding, combinatorics, group
theory, Kolmogorov complexity, matrix theory, and quantum mechanics. This expository
work is an attempt to present a picture for the many facets of the entropy function.!

Keywords: Entropy, polymatroid, non-Shannon-type inequalities, positive definite matrix,
quasi-uniform array, Kolmogorov complexity, conditional independence, network coding,
quantum information theory.
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