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Shannon’s Information Measures

• Entropy (Shannon Entropy)

H(X) = �
X

x

p(x) log p(x)

• Joint Entropy

H(X,Y ) = �
X

x,y

p(x, y) log p(x, y)

• In information theory, entropy is the measure of the uncertainty contained

in a discrete random variable, justified by fundamental coding theorems.
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The Basic Inequalities
• In addition to Entropy, we also have:

Conditional Entropy

H(X|Y ) = H(X,Y )�H(Y )

Mutual Information

I(X;Y ) = H(X) +H(Y )�H(X,Y )

Conditional Mutual Information

I(X;Y |Z) = H(X,Z) +H(Y, Z)�H(X,Y, Z)�H(Z)

• These are called Shannon’s information measures.

• Any Shannon’s information measure is a linear combination of joint en-

tropies.
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• Hu Guoding (1962) showed that for every identity of Shannon’s informa-
tion measures, there is a corresponding set-theoretic identity.

• For example,

H(X1, X2) = H(X1) +H(X2)� I(X1;X2)

in information theory corresponds to

µ(X̃1 [ X̃2) = µ(X̃1) + µ(X̃2)� µ(X̃1 \ X̃2)

the Inclusion-Exclusion formulation in set theory, where

H/I $ µ

, $ [
; $ \
| $ �

µ is any set-additive function, and X̃ is a set variable corresponding to
random variable X.
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Some questions:

1. For every set-theoretic identity, does there exist an information-theoretic

identity? If so, we can employ tools in set theory to study information

theory.

2. What would

µ(⌦) = µ(A) + µ(Ac
)

correspond to?
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The I-Measure µ*
• To tackle

µ(⌦) = µ(A) + µ(Ac
),

need to fix n, the number of random variables, and let ⌦ =

Sn
i=1

˜Xi.

• Then the set of joint entropies of X1, X2, · · · , Xn defines a unique signed

measure µ⇤
, called the I-Measure, which is consistent with Shannon’s

information measures.

• This establishes the set-theoretic structure of Shannon’s information mea-

sures.

• As an example, for n = 2 and A =

˜X1,

µ(⌦) = µ(A) + µ(Ac
)

corresponds to

H(X1, X2) = H(X1) +H(X2|X1).
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Information Diagrams
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μ* can be Negative
• µ� is nonnegative for n = 2.

• For n = 3, µ�(X̃1 ⇤ X̃2 ⇤ X̃3) = I(X1;X2;X3) can be negative.

Example 3.10

• X1, X2 – i.i.d. binary r.v.’s uniform on {0, 1}

• X3 = X1 + X2 mod 2

• Easy to check:

– H(Xi) = 1, for all i

– X1, X2, X3 are pairwise independent, so that

H(Xi, Xj) = 2 and I(Xi;Xj) = 0, for all i ⇥= j

– Under these constraints, I(X1;X2;X3) = �1.
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The information diagram for Example 3.10



Example 3.15 (Imperfect Secrecy Theorem) Let X be the plain text, Y
be the cipher text, and Z be the key in a secret key cryptosystem. Since X can
be recovered from Y and Z, we have

H(X|Y,Z) = 0.

Show that this constraint implies

I(X;Y ) ⇥ H(X)�H(Z).

Remark Do not need to make these assumptions about the scheme:

• H(Y |X, Z) = 0

• I(X;Z) = 0
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Markov Chains
• For a Markov chain of any length n, the information diagram can be

displayed in two dimensions because certain atoms can be suppressed.

• The values of µ⇤
on the remaining atoms correspond to Shannon’s in-

formation measures and hence are nonnegative. Thus, µ⇤
is a measure.

(Kawabata and Y, 1992).

• This theme can be extended to Markov random field. (Y, Ye and Lee,

2002).
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Preliminaries
• Nn = {1, . . . , n}

• ⌦ = {Xi, i 2 Nn}; Xi is a discrete random variable.

• For n random variables, there are 2

n � 1 joint entropies.

• E.g., n = 3, the 2

3 � 1 = 7 joint entropies are

H(X1), H(X2), H(X3), H(X1, X2), H(X2, X3),

H(X1, X3), H(X1, X2, X3)
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• Define H�(�) = H(X�). E.g., H�({1, 2, 3}) = H(X1, X2, X3).

• H� : 2Nn ⇥ IR is set function with H�(⇥) = 0.

• H� is called the entropy function of �.
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The Entropy Function as a 
Polymatroid

• It is well-known that for any �, H� satisfies the following polymatroidal
axioms. For any �,⇥ ⌅ Nn,

(P1) H�(⇤) = 0;
(P2) H�(�) ⇥ H�(⇥) if � ⌅ ⇥;
(P3) H�(�) + H�(⇥) ⇤ H�(� ⌥ ⇥) + H�(� ⌃ ⇥).
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The Basic Inequalities
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Shannon’s information measures, called the basic inequalities.
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        The Region     
• Fix n. For each ⇥, H� defines a vector in Hn = IR2n�1.

• Hn is called the entropy space for n r.v.’s

• A vector
h = (h� : � ⇥ 2Nn\⇤)

in Hn is called entropic if it corresponds to the entropy function H� for
some ⇥.

• Define the region in Hn:

�⇥n = {h ⇥ Hn : h is entropic}
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some ⇥.

• Define the region in Hn:

�⇥n = {h ⇥ Hn : h is entropic}

        The Region     ��
n



Entropy Inequalities:
A Geometric View

• An entropy inequality has the form f(h) ⇥ 0.

• f(h) ⇥ 0 always holds if and only if

��
n ⇤ {h ⌅ Hn : f(h) ⇥ 0}.

• In fact, f(h) ⇥ 0 always holds if and only if

��
n ⇤ {h ⌅ Hn : f(h) ⇥ 0}

because {h ⌅ Hn : f(h) ⇥ 0} is closed.
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f(h) � 0 Always holds
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*



f(h) � 0 Does Not Always holds

f(h) > 0
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         The Region �n

• Define the following region in Hn:

�n = {h ⌅ Hn : h satisfies the basic inequalities}

• ��
n ⇤ �n since the basic inequalities are satisfied by any X1, . . . , Xn.

• An entropy inequality f(h) ⇥ 0 is called a Shannon-type inequality if it
is implied by the basic inequalities, or

�n ⇤ {h ⌅ Hn : f(h) ⇥ 0}.
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Machine-Proving of 
Entropy Inequalities

The geometric view of entropy inequalities enables machine-proving of
entropy inequalities. The following applications have been developed:

1. ITIP (Information-Theoretic Inequality Prover) at CUHK
(Y.-O.Yan and Y, 1996)

2. Xitip at EPFL (Pulikkoonattu, Perron, Diggavi, 2007)

3. ITTP (Information-Theoretic Theorem Prover) at KAIST
(S.-Y. Chung, 2009)

ITIP and Xitip are linear programming based, while ITTP is axiom based.
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                 Is             ?             �̄⇤
n = �n

• The answer is NO i↵ there exists an entropy inequality g(h) � 0 which

cuts between �n and �
⇤
n. Such an inequality is called a non-Shannon-type

inequality.

• It is known that

1. �⇤
2 = �2

2. �⇤
3 6= �3, but �

⇤
3 = �3

• Therefore, unconstrained non-Shannon-type inequalities can exist only for
4 or more random variables.

• In general,

– �⇤
n is neither closed nor convex, but �

⇤
n is a convex cone.
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A Constrained Non-Shannon-Type Inequality
(ZY97)

• The following constrained inequality was discovered for any 4 random
variables (Zhang and Y, 1997):

If X1 ? X2|X3 and X1 ? X2, then

I(X3;X4)  I(X3;X4|X1) + I(X3;X4|X2)

• Under the constraint X1 ? X2, this is equivalent to the Ingleton inequality
in matroid theory:

H(X1, X3) +H(X1, X4) +H(X2, X3) +H(X2, X4) +H(X3, X4)

� H(X3) +H(X4) +H(X1, X2) +H(X1, X3, X4) +H(X2, X3, X4)

• ZY97 says that a certain region on the boundary of �n is not entropic.

• However, it is not strong enough to imply that �
⇤
4 6= �4.



A Constrained Non-Shannon-Type Inequality
(ZY97)

• The following constrained inequality was discovered for any 4 random
variables (Zhang and Y, 1997):

If X1 ? X2|X3 and X1 ? X2, then

I(X3;X4)  I(X3;X4|X1) + I(X3;X4|X2)

• Under the constraint X1 ? X2, this is equivalent to the Ingleton inequality
in matroid theory:

H(X1, X3) +H(X1, X4) +H(X2, X3) +H(X2, X4) +H(X3, X4)

� H(X3) +H(X4) +H(X1, X2) +H(X1, X3, X4) +H(X2, X3, X4)

• ZY97 says that a certain region on the boundary of �n is not entropic.

• However, it is not strong enough to imply that �
⇤
4 6= �4.



A Constrained Non-Shannon-Type Inequality
(ZY97)

• The following constrained inequality was discovered for any 4 random
variables (Zhang and Y, 1997):

If X1 ? X2|X3 and X1 ? X2, then

I(X3;X4)  I(X3;X4|X1) + I(X3;X4|X2)

• Under the constraint X1 ? X2, this is equivalent to the Ingleton inequality
in matroid theory:

H(X1, X3) +H(X1, X4) +H(X2, X3) +H(X2, X4) +H(X3, X4)

� H(X3) +H(X4) +H(X1, X2) +H(X1, X3, X4) +H(X2, X3, X4)

• ZY97 says that a certain region on the boundary of �n is not entropic.

• However, it is not strong enough to imply that �
⇤
4 6= �4.



A Constrained Non-Shannon-Type Inequality
(ZY97)

• The following constrained inequality was discovered for any 4 random
variables (Zhang and Y, 1997):

If X1 ? X2|X3 and X1 ? X2, then

I(X3;X4)  I(X3;X4|X1) + I(X3;X4|X2)

• Under the constraint X1 ? X2, this is equivalent to the Ingleton inequality
in matroid theory:

H(X1, X3) +H(X1, X4) +H(X2, X3) +H(X2, X4) +H(X3, X4)

� H(X3) +H(X4) +H(X1, X2) +H(X1, X3, X4) +H(X2, X3, X4)

• ZY97 says that a certain region on the boundary of �n is not entropic.

• However, it is not strong enough to imply that �
⇤
4 6= �4.



A Constrained Non-Shannon-Type Inequality
(ZY97)

• The following constrained inequality was discovered for any 4 random
variables (Zhang and Y, 1997):

If X1 ? X2|X3 and X1 ? X2, then

I(X3;X4)  I(X3;X4|X1) + I(X3;X4|X2)

• Under the constraint X1 ? X2, this is equivalent to the Ingleton inequality
in matroid theory:

H(X1, X3) +H(X1, X4) +H(X2, X3) +H(X2, X4) +H(X3, X4)

� H(X3) +H(X4) +H(X1, X2) +H(X1, X3, X4) +H(X2, X3, X4)

• ZY97 says that a certain region on the boundary of �n is not entropic.

• However, it is not strong enough to imply that �
⇤
4 6= �4.



An Unconstrained Non-Shannon-Type Inequality
(ZY98)

• The following unconstrained non-Shannon-type inequality was discovered

for any 4 random variables (Zhang and Y, 1998):

I(Z;U)� I(Z;U |X)� I(Z;U |Y )

 1

2

I(X;Y ) +

1

4

[I(X;Z,U) + I(Y ;Z,U)]

• This implies �

⇤
4 6= �4!
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Proof Idea of ZY98

p(x1,x2|x3,x4) p(x1,x2|x3,x4)

• For any X1, X2, X3, X4, construct two auxiliary random variables

˜X1, ˜X2

by

(X1, X2)  � (X3, X4) �! (

˜X1, ˜X2)

• Since (X1, X2, X3, X4) ⇠ (

˜X1, ˜X2, X3, X4), we have

H(X1) = H(

˜X1)

H(X1, X2) = H(

˜X1, ˜X2)

H(X1, X2, X3) = H(

˜X1, ˜X2, X3)

· · ·

• Using all these constraints and invoking the basic inequalities for 6 random

variables to obtain ZY98, which does not involve

˜X1, ˜X2!

• Can be proved by using ITIP.
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ZY98

An Illustration of ZY98



ITIP
1. >> ITIP(’H(XYZ) <= H(X) + H(Y) + H(Z)’)

True

2. >> ITIP(’I(X;Z) = 0’,’I(X;Z|Y) = 0’,’I(X;Y) = 0’)

True

3. >> ITIP(’I(Z;U) - I(Z;U|X) - I(Z;U|Y) <=

0.5 I(X;Y) + 0.25 I(X;ZU) + 0.25 I(Y;ZU)’)

Not provable by ITIP
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From nicholas@cs.ubc.ca Tue Jul  7 23:04:11 1998

X400-Received: by /PRMD=ca/ADMD=telecom.canada/C=ca/; Relayed; Tue,  7 Jul 

1998  

8:03:59 UTC-0700

Date: Tue,  7 Jul 1998  8:03:59 UTC-0700

X400-Originator: nicholas@cs.ubc.ca

X400-Recipients: non-disclosure:;

X400-Content-Type: P2-1984 (2)

X400-MTS-Identifier: [/PRMD=ca/ADMD=telecom.canada/C=ca/;980707080359]

Content-Identifier: 4429

X-UIDL: 900031892.048

From: Nicholas Pippenger <nicholas@cs.ubc.ca>

To: zzhang@milly.usc.edu, whyeung@ie.cuhk.edu.hk

MIME-Version: 1.0 (Generated by Ean X.400 to MIME gateway)

I have just seen your paper "On the Characterization of Entropy

Function via Information Inequalities" in the IEEE Transactions on

Information Theory.  Please allow me to congratulate you on a most

beautiful result!  I worked on the problem of whether \overbar{\Gamma}^*_n

= \Gamma_n during the 80s, without any success.  I presented it as an open

problem at the SPOC (Specific Problems on Communication and Computation)

Conference in 1986--I believe there were proceedings published by Springer,

but they seem to be out of print now.  

It was wonderful to see your paper.

 - Nick Pippenger





Other Non-Shannon-Type Inequalities

• Matúš (1999) proved the Ingleton inequality under the constraints X1 ?
X2|X3 and X2 ? X4|X3 (X1 ? X2 for ZY98).

• ZY98 have been further generalized by Makarychev et al. (2002), Zhang

(2003), and Matúš (2007).

• In particular, Matúš showed that �

⇤
n is not a polyhedral cone, and hence

there exist an infinitely number of linear non-Shannon-type inequalities!

• Dougherty, Freiling and Zeger (2006) have discovered several tens of non-

Shannon-type inequalities by a search on a supercomputer.

Remark

• Matúš (2007) also showed a fundamental property of �

⇤
n:

int(cl(�⇤
n)) ⇢ �

⇤
n

i.e., �

⇤
n has a solid core.
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• Matúš (1999) proved the Ingleton inequality under the constraints X1 ?
X2|X3 and X2 ? X4|X3 (X1 ? X2 for ZY98).

• ZY98 have been further generalized by Makarychev et al. (2002), Zhang

(2003), and Matúš (2007).
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• Dougherty, Freiling and Zeger (2006) have discovered several tens of non-

Shannon-type inequalities by a search on a supercomputer.
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• Matúš (2007) also showed a fundamental property of �
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• Matúš (2007) also showed a fundamental property of �

⇤
n:

int(cl(�⇤
n)) ⇢ �

⇤
n

i.e., �

⇤
n has a solid core.



Other Non-Shannon-Type Inequalities
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• Matúš (2007) also showed a fundamental property of �

⇤
n:

int(cl(�⇤
n)) ⇢ �

⇤
n

i.e., �

⇤
n has a solid core.



   Subjects Related to ��
n

!n
* Matrix

Theory
 Probability

Theory

Coding 
Network Combinatorics

Kolmogorov
Complexity

Group
Theory

Quantum

Mechanics



COMBINATORICS



2-D Quasi-Uniform Array
• For a distribution p(x), a sequence x of length n is strongly typical if the

empirical distribution of x is approximately equal to p(x).

• Let p(x, y) be a joint distribution. The strongly typical sequences w.r.t.
p(x, y), p(x), and p(y) can be illustrated by a 2-D quasi-uniform array.

2 nH ( Y ) 

2 nH ( X,Y ) 2 nH ( X ) 

y S 
[ Y ] 

n 

x S 
[ X ] 

n 
( x , y ) T 

[ XY ] 

n 

. 

. 

. . 
. 
. 

. . . 
. 

. . . . 

. 
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• Each row has approximately the same number of dots (⌅ 2nH(Y |X)) and
each column has approximately the same number of dots (⌅ 2nH(X|Y )).

• Thus

2nH(X,Y ) ⇥ 2nH(X)2nH(Y ) ⇧ H(X, Y ) ⇥ H(X) + H(Y )

• Then the basic inequality I(X;Y ) ⇤ 0 is about the unfilled entries in the
array.
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3-D Quasi-Uniform Array

2 nH ( Y ) 

2 nH ( Z ) 

( x 
0 
, y 

0 
) 

z 
0 

z S 
[ Z ] 

n 

y S 
[ Y ] 

n 

2 nH ( X ) x S 
[ X ] 

n 



Quasi-Uniform Arrays and 
Entropy Inequalities

• For an n-dimensional quasi-uniform array, if all the “dots” are assigned
equal probabilities, then the projection on every lower dimensional plane
has a uniform distribution over its support.

• Do quasi-uniform arrays fully capture all constraints on the entropy func-
tion?

• YES. T. Chan (2001) showed that all constraints on the entropy function
can be obtained through quasi-uniform arrays, and vice versa.
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GROUP THEORY



Entropy and Groups 
(Chan-Y 2002)

• Let G be a finite group and G1, G2, . . . , Gn be subgroups of G.

• Let G� = ⇥i��Gi, also a subgroup.

• A probability distribution for n random variables X1, X2, . . . , Xn can be
constructed from any finite group G and subgroups G1, G2, . . . , Gn, with

H(X�) = log
|G|
|G�|

which depends only on the orders of G and G1, G2, . . . , Gn.
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Entropy and Groups 
• Substituting the joint entropies into any entropy inequality gives a group

inequality.

• For example, for any X1, X2,

H(X1) + H(X2) ⇥ H(X1, X2)

corresponds to for any finite group G and subgroups G1, G2,

log
|G|
|G1|

+ log
|G|
|G2|

⇥ log
|G|

|G1 ⇤G2|

or
|G||G1 ⇤G2| ⇥| G1||G2|
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Non-Shannon-Type 
Group Inequalities

• “Non-Shannon-type” group inequalities can be obtained accordingly.

• For example, ZY98 can be written as

H(X1) +H(X1, X2) + 2H(X3)

+2H(X4) + 4H(X1, X3, X4)

+H(X2, X3, X4)

9
=

; 

8
<

:

3H(X1, X3) + 3H(X1, X4)

+3H(X3, X4) +H(X2, X3)

+H(X2, X4)

• This corresponds to

|G1||G1 \G2||G3|2
· |G4|2|G1 \G3 \G4|4

· |G2 \G3 \G4|

9
=

; �

8
<

:

|G1 \G3|3|G1 \G4|3
· |G3 \G4|3|G2 \G3|
· |G2 \G4|

• It can be proved that the correspondence between entropy inequalities and

group inequalities is one-to-one.
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Relation between Finite Group 
and Quasi-Uniform Array

• The distribution of the elements of a finite group among its subgroups
exhibits a quasi-uniform structure.
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PROBABILITY 
THEORY



Compatibility of Conditional 
Independence

• The Implication Problem Is a given conditional independency implied by
a given set of conditional independencies?

• Example
X ⇤ Y ⇤ Z
X ⇧ Y

�
⌅ X ⇧ Z

• A very basic problem in probability theory.

• Very hard for n ⇥ 4.
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Compatibility of Conditional 
Independence

• This is a subproblem of characterizing �

⇤
n because a conditional indepen-

dence relation is just a hyperplane in Hn.

• For example, X ? Y |Z , I(X;Y |Z) = 0.

• Thus the conditional independence problem is

A discrete problem imbedded in a continuous problem.

• The more general p-representability problem was studied by Matúš and

Studený (1995).

• n = 4 was settled by F. Matúš (1999) by proving a constrained version of

the Ingleton inequality (non-Shannon-type).

• Very hard for n � 4.
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KOLMOGOROV 
COMPLEXITY



Entropy and 
Kolmogorov Complexity

• Let K(·) denotes the Kolmogorov complexity of a collection of sequences.

• Hammer et al. (2000) showed that there exists a one-to-one correspondence
between entropy inequalities and Kolmogorov complexity inequalities.

• For example, for any X1, X2,

H(X1) + H(X2) ⇤ H(X1, X2)

corresponds to for any two sequences x and y,

K(x1) + K(x2) ⇤ K(x1, x2)

• “Non-Shannon-type” Kolmogorov complexity inequalities can be obtained
accordingly.
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• Any (symmetric) positive definite matrix is a valid covariance matrix, so
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Non-Shannon-Type Matrix Inequalities
• Substituting these joint di↵erential entropies into the inequality

h(X1, X2, . . . , Xn) 
X

i

h(Xi)

gives the Hadamard inequality
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• Substituting these joint di↵erential entropies into ZY98 gives

|K1||K12||K3|2|K4|2|K134|4|K234|
 |K13|3|K14|3|K34|3|K23||K24|

for all positive definite matrices.

• Many other “non-Shannon-type” inequalities of the principal minors of
positive definite matrices can be obtained this way.
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• Chan, Guo, and Y (2012) showed that this is the case for 3 ⇥ 3 positive
definite matrices.

• Previously, Hassibi and Shadbakht (2008) studied normalized Gaussian
entropy functions and obtained a characterization for 3 Gaussian random
variables.
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The von Neumann Entropy
• The von Neumann entropy is an extension of the Shannon entropy to

quantum mechanics.

• The strong subadditivity of the von Neumann entropy (analogous to the
basic inequalities for the Shannon inequalities) was proved by Lieb ad
Ruskai (1973).

• Inspired by the discovery of non-Shannon-type inequalities, Pippenger
(2003) proved that for a 3-party system, there exists no inequality for
the von Neumann entropy beyond strong subadditivity.

• Linden and Winter (2005) discovered for a 4-party system a constrained
inequality for the von Neumann entropy which is independent of strong
subadditivity.
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Facets of Entropy

Raymond W. Yeung⇤

October 4, 2012

Constraints on the entropy function are of fundamental importance in information theory.
For a long time, the polymatroidal axioms, or equivalently the nonnegativity of the Shan-
non information measures, are the only known constraints. Inequalities that are implied by
nonnegativity of the Shannon information measures are categorically referred to as Shannon-
type inequalities. If the number of random variables is fixed, a Shannon-type inequality can
in principle be verified by a software package known as ITIP. A non-Shannon-type inequal-
ity is a constraint on the entropy function which is not implied by the nonnegativity of the
Shannon information measures. In the late 1990s, the discovery of a few such inequalities
revealed that Shannon-type inequalities alone do not constitute a complete set of constraints
on the entropy function. In the past decade or so, connections between the entropy function
and a number of subjects in information sciences, mathematics, and physics have been es-
tablished. These subjects include probability theory, network coding, combinatorics, group
theory, Kolmogorov complexity, matrix theory, and quantum mechanics. This expository
work is an attempt to present a picture for the many facets of the entropy function.1

Keywords: Entropy, polymatroid, non-Shannon-type inequalities, positive definite matrix,
quasi-uniform array, Kolmogorov complexity, conditional independence, network coding,
quantum information theory.
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1This work is based on the author’s plenary talk with the same title at the 2009 IEEE International
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