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Information Inequalities
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Shannon’s Information Measures
Compulsory Slide

Conditional Entropy:

H(XjY ) = H(XY )�H(Y )

� 0

Mutual Information:

I(X :Y ) = H(X) +H(Y )�H(XY )

� 0

Conditional Mutual Information:

I(X :Y jZ) = H(XZ) +H(Y Z)�H(XY Z)�H(Z)

� 0

Shannon’s Basic Inequality
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4-Information Diagram
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Linear information inequalities

Pippenger (1986):
“What are the laws of Information Theory?”

Basic inequality:

H(AB) � H(A) +H(B) [I(A:B) � 0]

H(ABC) +H(C) � H(AC) +H(BC) [I(A:BjC) � 0]

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

H(A) � H(AjB) +H(AjC) + I(B :C)

Non-Shannon-type inequalities, e.g., [Z. Zhang, R. W. Yeung, 1998] :

I(C :D) � 2I(C :DjA) + I(C :DjB) + I(A:B) + I(A:CjD) + I(A:DjC)
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Non-Shannon-type

How to prove non-Shannon
inequalities?
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Sautéed ZY98 à la DFZ

The following is a Shannon-type inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)+

+ 3I(Z :ABjCD)

IDEA: Take Z to be a B-copy of A over CD:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjA) + I(A:CjD) + I(A:DjC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 10 / 48



Sautéed ZY98 à la DFZ

The following is a Shannon-type inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)+

+ 3I(Z :ABjCD)

IDEA: Take Z to be a B-copy of A over CD:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjA) + I(A:CjD) + I(A:DjC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 10 / 48



Sautéed ZY98 à la DFZ

The following is a Shannon-type inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)+

+ 9811I(Z :ABjCD)

IDEA: Take Z to be a B-copy of A over CD:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjA) + I(A:CjD) + I(A:DjC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 10 / 48



Sautéed ZY98 à la DFZ

The following is a Shannon-type inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)+

+ 3I(Z :ABjCD)

IDEA: Take Z to be a B-copy of A over CD:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjA) + I(A:CjD) + I(A:DjC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 10 / 48



Sautéed ZY98 à la DFZ

The following is a Shannon-type inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)+

+ 3I(Z :ABjCD)

IDEA: Take Z to be a B-copy of A over CD:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjA) + I(A:CjD) + I(A:DjC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 10 / 48



Sautéed ZY98 à la DFZ

The following is a Shannon-type inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)+

+ 3I(Z :ABjCD)

IDEA: Take Z to be a B-copy of A over CD:

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)+

+ I(C :DjA) + I(A:CjD) + I(A:DjC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 10 / 48



MMRV

The following is a Shannon-type inequality:

H(Z) � I(C :DjA) + I(C :DjB) + I(A:B) + 2H(ZjC) + 2H(ZjD)

H(Z) � H(ZjA) +H(ZjB) + I(A:B)

H(ZjA) � H(ZjC) +H(ZjD) + I(C :DjA)

H(ZjB) � H(ZjC) +H(ZjD) + I(C :DjB)

IDEA: Take Z to be a common information between C and D

H(W jC) = H(W jD) = 0

H(W ) = I(C :D)

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)

Wait...Such a common information does not exist in general!
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Common Information vs. Mutual Information 1/2

Extractability Criterion for Triples
(Romashchenko)

0

0 0

C D

Z

,

There is a common information W for the random variables C;D;Z.
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Common Information vs. Mutual Information 2/2

We can still “approximately” extract mutual information.
(indep. by Ahlswede/Gacs/Korner, Wyner rediscovered by Zhang, Romashchenko,
Chan...)

a
b

c

d
e

f

g

� a
� b

� c

� d
� e

� f

� 0

� From the diagram on the left, we can get the diagram of the right up to
any given precision.

� Can be generalized to n variables.
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MMRV (really)

The following is a Shannon-type inequality:

H(Z) � I(C :DjA) + I(C :DjB) + I(A:B) + 2H(ZjC) + 2H(ZjD)

a b c

d
e

f

g

C D

Z

a b c

d
e

f

0

C D

Z 0

IDEA: Take Z0 as in diagram

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B) + I(C :DjZ) + I(Z :CjD) + I(Z :DjC)
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Equivalence of Two Proofs
Systems
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Inference Rules 1/2

Rule ZY

(A) Let f and g be linear maps on entropies such that

f (XN ; YM) + g(YM; Z) + �I(Z :XN jYM) � 0;

for some � � 0;

(B) then the following (stronger) inequality is also valid:

f (XN ; YM) + g(YM; Z) � 0:

I(C :DjA) + I(C :DjB) + I(A:B) +

+ I(C :DjZ) + I(Z :CjD) + I(Z :DjC)� I(C :D) +

+ 3I(Z :ABjCD) � 0
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Inference Rules 2/2

Rule MMRV
(A) Let f and g be linear maps on entropies such that

f (XN ; YM) + g(YM; Z) � 0;

(B) then the following (stronger) inequality is also valid:

f (XN ; YM) + g(YM; Z) � rZH(ZjYM) � 0;

where rZ is the sum of coefficients invoving Z.

I(C :DjA) + I(C :DjB) + I(A:B) + 2H(ZjC) + 2H(ZjD)�H(Z) � 0

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 17 / 48



Inference Rules 2/2

Rule MMRV
(A) Let f and g be linear maps on entropies such that

f (XN ; YM) + g(YM; Z) � 0;

(B) then the following (stronger) inequality is also valid:

f (XN ; YM) + g(YM; Z) � rZH(ZjYM) � 0;

where rZ is the sum of coefficients invoving Z.

I(C :DjA) + I(C :DjB) + I(A:B) + 2H(ZjC) + 2H(ZjD)�H(Z) � 0

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 17 / 48



Proof systems

Definition
A proof system (for inequalities) consists of a pool P of inequalities and a rule T. A
(computation) step in a proof system is described as follows:

1 Pick an inequality (A) from the convex closure of P ;

2 Apply rule T to (A) and infer inequality (B);

3 Add (B) to the pool P .

A derivation is a sequence of valid steps in a system. An inequality (I) is provable in
system S if it belongs to the convex closure of the pool of S after some derivation.

� SYSTEM ZY: the system using RULE ZY.

� SYSTEM MMRV: the system using RULE MMRV.
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More on Information Inequalities

Theorem (Balanced Inequalities, Chan)

1 The inequality ∑
?6=J�N

cJH(XJ) � 0

is a valid information inequality.

2 The inequality ∑
?6=J�N

cJH(XJ)�
∑
i2N

riH(X| jXN�i) � 0;

where r| is the sum of all cJ involving |, is a valid balanced information inequality.

In other words, we can always assume that

8i 2 N ; ri =
∑

i2J�N

cJ = 0:
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Balanced Shannon-type Inequalities

Toy example:

Proposition

The basic inequality
I(XI :XJ jXK) � 0

is balanced iff I \ J � K.
Any instance can be put in balanced form as a some of two other instances.

� Simpler and direct proof that Shannon-type inequalities can be
“balanced”.

� Note: The elemental inequality H(Xi jXN�i) � 0 is not balanced.
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Equivalence Modulo Balancing

Theorem (informal)

SYSTEM ZY and SYSTEM MMRV prove the same balanced inequalities

(A1) (A2)

(B[b])

ZY
MMRV
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Equivalence Modulo Balancing

Theorem (informal)

SYSTEM ZY and SYSTEM MMRV prove the same balanced inequalities

(Ab)

(A1) (A2)

(B[b])

ZY
MMRV
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Essentially Conditional
Inequalities
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Framework definitions

For n random variables, there 2n � 1 possible entropies.
When n = 3, there are 7 possible joint entropies:

(H(A); H(B); H(C); H(AB); H(AC); H(BC); H(ABC)) 2 R7

Such a vector of entropies is called an entropic point.
An almost entropic point is the limit of a sequence of entropic points.

Disclaimer: This notation is handy so we (ab)use it and use, e.g., H(AB) for
the corresponding value of an almost entropic vector (even if it does not
correspond to any distribution entropy)
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The difference is at the boundary

Story / Motivation

� Closed pointed convex cones

� Points inside the cone are entropic, i.e. the difference is at the boundary.

� How much difference?

� Hard: The difference can be significant

� Simpler: What do the faces looks like?

What are the valid (conditional) inequalities on faces (subcone)?
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Conditional information inequalities

If [some linear constraints for entropies]
then [a linear inequality for entropies].

� Example 1 (trivial): If I(B :C) = 0, then H(A) � H(AjB) +H(AjC).
Explanation:
H(A) � H(AjB) +H(AjC) + I(B :C).

� Example 2 (trivial): If I(C :DjE) = I(C :EjD) = I(D:EjC) = 0, then
I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B).
Explanation:
I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B) + I(C :DjE) + I(C :EjD) + I(D:EjC).

� Example 3 (nontrivial) [Zhang–Yeung 1997]: If I(A:B) = I(A:BjC) = 0, then
I(C :D) � I(C :DjA) + I(C :DjB).
Any explanation???
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� Example 2 (trivial): If I(C :DjE) = I(C :EjD) = I(D:EjC) = 0, then
I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B).
Explanation:
I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B) + I(C :DjE) + I(C :EjD) + I(D:EjC).

� Example 3 (nontrivial) [Zhang–Yeung 1997]: If I(A:B) = I(A:BjC) = 0, then
I(C :D) � I(C :DjA) + I(C :DjB).
Any explanation???
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Other Conditional Inequalities

Theorem (Matus)

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)

+ I(A:CjE) + I(A:EjC) +
1

k
I(C :EjA) +

k � 1

2
[I(A:DjC) + I(A:CjD)]:

Corollary
If I(A:CjD) = I(A:DjC) = 0 then

I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B) + I(A:CjE) + I(A:EjC):

This conditional inequality hold (not only for entropic but also) for almost entropic
points.

Two 4-variable conditional inequalities are valid for all almost entropic points
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Other Conditional Inequalities

I(A:BjC) = I(B :DjC) = 0, or
I(A:CjD) = I(A:DjC) = 0, or

I(A:B) = I(A:BjC) = 0︸ ︷︷ ︸
[Zhang–Yeung 97]

I(A:CjD) = I(C :DjA) = 0︸ ︷︷ ︸
[Matúš 99/2007]

H(CjA;B) = I(A:BjC) = 0︸ ︷︷ ︸
[Romashchenko,K. 2011]

& # .
I(C :D) � I(C :DjA) + I(C :DjB) + I(A:B)︸ ︷︷ ︸

[Ingleton 69]

Theorem (Romashchenko, K. 2011/2012)

All of these statements are essentially conditional inequalities.
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Essentially Conditional Inequalities

� Z. Zhang, R. W. Yeung 97:
if I(A:B) = I(A:BjC) = 0, then I(C :D) � I(C :DjA) + I(C :DjB).

� Theorem [Romashchenko, K. 2011] This inequality is essentially conditional, i.e.,
for all �1; �2 the inequality:

I(C :D) � I(C :DjA) + I(C :DjB) + �1I(A:B) + �2I(A:BjC)

is not valid.
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Proof by ad-hoc example

Claim: For any �1; �2 there exist (A;B; C;D) such that:

I(C :D) 6� I(C :DjA) + I(C :DjB) + �1I(A:B) + �2I(A:BjC)

Proof:
a b c d Prob[a; b; c; d ]

0 0 0 1 (1� ")=4

0 1 0 0 (1� ")=4

1 0 0 1 (1� ")=4

1 1 0 1 (1� ")=4

1 0 1 1 "

I(C :D) 6� I(C :DjA) + I(C :DjB) + �1I(A:B) + �2I(A:BjC)

k k k k k
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Proof by ad-hoc example
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k k k k k

�(") 6� 0 + 0 + O(�1"
2) + 0
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Proof by geometric example

Construction of (A;B; C;D)q

On the affine plane over Fq :

1 Pick a random a non-vertical line C.

2 Pick two random points A and B on C.

3 Pick a random non-degenerate parabola D

intersecting C exactly at A and B.

A

B
C

D

1 +
1

q
6� O

(
�
log q

q

)
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Non-robustness of some conditional inequalities

I(A:B) = I(A:BjC) = 0) I(C :D) � I(C :DjA) + I(C :DjB) (ZY97)

In fact we have a stronger result. Let � > 0, assume

� 0 < I(A:B) � �.

� 0 < I(A:BjC) � �.

� 0 < H(ABCD) = const.

Then the ratio

can be made arbitrarily large.
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For almost entropic points

Theorem (Romashchenko, K. 2012)
Two essentially conditional inequalities are not valid for all almost entropic points
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The current essentially conditional zoo

Valid for a.ent. points Essentially Conditional

Offspring of
unconditional
inequalities

ZY98

KR11

Matus07-1

Matus07-2

Where does Matus99 belong ?
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Geometric Interpretations

Convexity has an immensely rich structure and numerous
applications. On the other hand, almost every “convex”
idea can be explained by a two-dimensional picture.

- Alexander Barvinok

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 34 / 48



Geometric interpretation 1/3

For (x; y) in the gray set: if y = 0 then x � 1

(0,0) (1,0) x

y

−x+ y+1≥ 0

A trivial conditional inequality can be extended to an unconditional one.
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Geometric interpretation 2/3

For (x; y) in the gray set: if y = 0 then x � 1

(0,0) (1,0) x

y

This conditional inequality is implied by an infinite family of tangent half-planes.
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A Corollary

Theorem: There exist essentially conditional inequalities that hold for
almost entropic points.

+

Theorem [Matúš 07] The cone of linear information inequalities with 4

random variables is not polyhedral, i.e., there exist infinitely many
independent linear information inequalities.
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Geometric interpretation 3/3

For (x; y) in the gray set: if y = 0 then x � 1

(0,0) (1,0) (2,0) x

y

For the closure of this set, with the same constraint y = 0 we only have x � 2.
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Going further
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Other Frameworks

Frameworks with the same underlying inequalities

Framework Objects Projection Quantity

Quantum Entropy systems subsystem Quantum Entropy
Kolmogorov strings subtuples Kolmogorov Complexity

Information Theory Random variables subtuples Shannon Entropy
Group Theory groups subgroups log size

Combinatorial Arrays Arrays subarrays log size
. . . . . . . . . . . .

Vector spaces subspaces rank dimension intersection

� “Reverse mathematics” (philosophical) question:
Is there a common set of axioms that induce these inequalities ?

� Question (obvious extension):
Since unconditional inequalities are the same in every framework : What about
their conditional inequalities ?
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Kolmogorov Complexity
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Algorithmic Information Theory

Counterpart to Kolmogorov Complexity

Fix an acceptable programming system.
For any binary strings x; y :

C(x) = length of a shortest program printing x ,

C(x jy) = length of a shortest program printing x given input y .

And up to O(log jxy j),

C(x) � 0;

C(x jy) � 0;

C(x) + C(y) � C(x; y):

Theorem (Inequalities are the same, Hammer et al)

An inequality is valid for Shannon iff it is valid for Kolmogorov up to an additive
logarithmic term
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For Kolmogorov Complexity

Conditional Algorithmic Inequalities

� We cannot say C(a; b) = C(a) + C(b) with exact equality.

� All statements in the Kolmogorov framework are (inherently) asymptotic.

� Need to add a precision for conditions:

� We have “thick” faces of thickness f (N)

(where N is the complexity of the tuple of strings)

� Some conditional inequalities are valid up to O(f (N))

� Some conditional inequalities are valid up to �
(√

Nf (N)
)

� Some conditional inequalities are not valid (O(N) counterexample)
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Secret Sharing
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New parameters: the leakages.

Definition
A perfect secret-sharing scheme for � is a tuple of discrete random variables
(s; p1; : : : ; pn) such that :

� if A 2 � then H(sjA) = 0

� if B =2 � then I(s :B) = 0

Parameters of a scheme:
" : missing information ratio.

� : information leak ratio.

� : information ratio = max
p

H(p)
H(s) .
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Quasi-perfect Secret Sharing

Definition
An access structure � can be quasi-perfectly implemented with
information ratio � if there exists a sequence of secret-sharing schemes
such that:

(1) the lim sup of the information ratio does not exceed �;

(2) the missing information ratio tends to zero;

(3) the information leak ratio tends to zero.

� Almost entropic version of secret sharing.

� Closely related to a “Kolmogorovian” Counterpart of Secret Sharing.

� Question: Can they achieve better information ratios?
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Bounds on Perfect Schemes

a b c d

AB

C

D
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Proof by (Venn) Information Diagram

a b c d

A

B

C

D
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in B or C
represent:

H(BC)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both A and B
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both C and D

but not A represent:

I(C :DjA)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in B or C but
not A nor D represent:

H(BCjAD)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both B and D

but not A nor C represent:

I(B :DjAC)

Tarik Kaced (CUHK) E(C)II Talk April 17, 2013 47 / 48



Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both A and C

but not B represent:

I(A:CjB)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Actually, we just proved an
identity without words...

H(BC) = I(A:CjB) + I(B :DjAC) +H(BCjAD) + I(A:B) + I(C :DjA):
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

..or an inequality, since all
quantities are non-negative.

H(BC) � I(A:CjB) + I(B :DjAC) +H(BCjAD):
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Using the perfect secret sharing
requirements, we obtain:

H(BC) � 3H(S):
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

In general this is a HUGELY
conditional inequality

“secret sharing requirements” ) H(BC) � 3H(S):
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Merci de votre attention.

Des questions?
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