Randomized Time Division strategy for broadcasting

information

Chandra Nair

Department of Information Engineering

The Chinese University of Hong Kong
chandra.nair@gmail.com

Feb 26, 2014



BROADCAST CHANNELS [COVER *72]

Y" .
Decoder 1 — M;
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Decoder 2 — M,

Figure : Discrete memoryless broadcast channel

@ How to simultaneously communicate independent messages to the two
receivers over a shared medium?

@ Want to take advantage of the fact that the transmitted symbols are
corrupted differently for the two receivers
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ENCODING STRATEGY [COVER ’72]

A natural coding strategy is TIME DIVISION.

Can one do better?
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ENCODING STRATEGY [COVER ’72]

A natural coding strategy is TIME DIVISION.
Can one do better?

Imagine that you are simultaneously speaking to two people:
@ Johnny English understands only English alphabets: A, B and when it is
not either he denotes it as *.
@ Ms. Discrete understands understands only O and 1, and when it is
neither she denotes it as 7.
Suppose you want to communicate a word AABBAABB to Johnny English
and the word 101110 to Ms. Discrete then your can either speak

o AABBAABBI101110 or 101110AABBAABB
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ENCODING STRATEGY [COVER ’72]

A natural coding strategy is TIME DIVISION.
Can one do better?

Imagine that you are simultaneously speaking to two people:
@ Johnny English understands only English alphabets: A, B and when it is
not either he denotes it as *.
@ Ms. Discrete understands understands only O and 1, and when it is
neither she denotes it as 7.
Suppose you want to communicate a word AABBAABB to Johnny English
and the word 101110 to Ms. Discrete then your can either speak
o AABBAABBI101110 or 101110AABBAABB
@ In particular you can choose any one of the (184 ) = 3003 possibilities

Which particular order you choose can convey |log,(3003) | = 11 additional
bits of information that is decodable by both receivers.
Such a strategy is called RANDOMIZED TIME DIVISION
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COMPARING ACHIEVABLE RATE REGIONS

Using time-division one can achieve

R < aCjg = alog,(3)
T, < (1 - a)Cp = (1 - @) log, (3)

forany 0 < o < 1.

Using randomized time-division, one can achieve (R, R,) satisfying

R < H(a) + alog,(2)
Ry <H(a)+ (1 —a)log,(2)
Ri + Ry < H(a) + alog,(2) + (1 — a)log,(2)

forany 0 < o < 1.
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RATE REGIONS

log, (3)

Ry

Ry log,(3)

Figure : Achievable regions for time division vs randomized time division
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RECAP: RANDOMIZED TIME-DIVISION STRATEGY

@ One picks a codebook of binary codewords that is decodable by both
receivers

@ The codeword is picked from this codebook that reveals common
(timing) information to both receivers

@ On the locations where this timing codeword has 0, the encoder sends a
codeword tailored to be decoded by receiver ¥

@ On the locations where this timing codeword has 1, the encoder sends a
codeword tailored to be decoded by receiver Z
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RECAP: RANDOMIZED TIME-DIVISION STRATEGY

@ One picks a codebook of binary codewords that is decodable by both
receivers

@ The codeword is picked from this codebook that reveals common
(timing) information to both receivers

@ On the locations where this timing codeword has 0, the encoder sends a
codeword tailored to be decoded by receiver ¥

@ On the locations where this timing codeword has 1, the encoder sends a
codeword tailored to be decoded by receiver Z

Using randomized time-division, one can achieve (R, R,) satisfying
Ry <I(W;Y)+P(W=0)I(X;Y|W=0)
Ry <IW;Z)+P(W=DIX;Z|W=1)
R+ Ry <min{I(W;Y),I(W;Z)} + P(W = 0)I(X;Y|W = 0)
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HOW GOOD IS THIS STRATEGY?

Randomized time divison is a naive improvement over time-division.

The best achievable region for broadcast channel is due to Marton [Mar *79]

Marton’s achievable region
The union of rate pairs (R;, R,) such that the rate pairs satisfy
Ry < I(UW;Y)
R, <1(VW;Z)
Ri + Ry < min{I(W;Y),[(W; Z)} + I(U; Y|W)
+ I(V; Z|W) — I(U; V|W)
forany (U,V,W) — X — (Y, Z) is achievable.

Issue: The above region was not computable (no cardinality bounds on
Uu,v,w)
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INVESTIGATING MARTON’S ACHIEVABLE REGION

o Conjectured that for a particular binary input broadcast channel

SRytarton = SRrTD [Nair-Wang 08]
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o Conjectured that for a particular binary input broadcast channel

SRyarton = SRRrTD [Nair-Wang *08]

e Established cardinality bounds
U] < X1, [V] < [X], W] < |X] + 4

for evaluating Marton’s achievable region [Gohari-Anantharam ’09]
e Novel kind of perturbation arguments
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INVESTIGATING MARTON’S ACHIEVABLE REGION

o Conjectured that for a particular binary input broadcast channel

SRyarton = SRRrTD [Nair-Wang *08]

@ Established cardinality bounds
Ul < |X],[V] < [X],|W] < [X] + 4

for evaluating Marton’s achievable region [Gohari-Anantharam ’09]
e Novel kind of perturbation arguments
e Extended the perturbation arguments to show that the earlier conjectured
result is true [Jog-Nair 09]
@ Showed that for all binary input broadcast channels

SRytarton = SRrTD [Geng-Nair-Wang *10]

What about entire region and not just sum-rate?

C. Nair (CUHK) Research Feb 26, 2014 8/16



IMPROVED CARDINALITY BOUNDS

Combining
@ perturbation arguments [Gohari-Anantharam]
@ concave envelope interpretation for extremal auxiliaries [Nair]

one can show that it suffices to consider auxiliairies U, V that satisfy
U+ V< IX]+1

to evaluate Marton’s achievable region [Anantharam-Gohari-Nair *12]
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IMPROVED CARDINALITY BOUNDS

Combining
@ perturbation arguments [Gohari-Anantharam]
@ concave envelope interpretation for extremal auxiliaries [Nair]

one can show that it suffices to consider auxiliairies U, V that satisfy
U+ V< IX]+1

to evaluate Marton’s achievable region [Anantharam-Gohari-Nair *12]

This shows that when |X| = 2, |U| + |V] < 3.

Since |U|, |V| > 1; the only possibilities are |U| = 2, |V| = 1 or
V| =2,|U| = 1.

This in particular implies that

@ Marton’s achievable region matches randomized time division when |X|
is binary
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MAIN RESULT

Ty o(X) = sup  od(U;Y)+1(V;Z) —I(U; V)
(U,V)—=X—(Y,Z)

Cardinality bounds on U, V

For all broadcast channels ¢(y, z|x), for all A € [0, 1], forall « > 1, to
compute

Cl—(a = NH(Y) = MH(Z) + Ty o (X)]

it suffices to consider ||U|| + || V]| < || X]|| + 1.

10/16
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MAIN RESULT

Ty o(X) = sup  od(U;Y)+1(V;Z) —I(U; V)
(U,V)—=X—(Y,Z)

Cardinality bounds on U, V

For all broadcast channels ¢(y, z|x), for all A € [0, 1], forall « > 1, to
compute

Cl—(a—=NH(Y) = H(Z) + Ty (X))
it suffices to consider ||U|| + || V]| < || X]|| + 1.

Corollary

@ Suffices to consider | U|| + || V]| < ||X|| + 1, ||[W]] < ||X|| + 4 to compute
MIB(g)
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IDEA OF PROOF

Suppose p(u, v, x) is an extremal distribution such that
Cl—(a—=NH(Y) = AH(Z) + Ty,o(X)]
= —(o— NH(Y) = AH(Z) + ol (U; Y) + I(V; Z) — I(U; V),
then the r.h.s. is locally concave with respect to all perturbations of p(u, v, x).

Rearrange the right hand side as
MH(Y)—H(Z))—aH(Y|U)+ H(V|U)—H(Z|V)
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IDEA OF PROOF

Suppose p(u, v, x) is an extremal distribution such that
Cl—(a—=NH(Y) = AH(Z) + Ty,o(X)]
= —(a— NH(Y) = AH(Z) + al(U;Y) + I(V; Z) — I(U; V),

then the r.h.s. is locally concave with respect to all perturbations of p(u, v, x).
Rearrange the right hand side as

AH(Y) — H(Z))—aH(Y|U) + H(V|U)—H(Z|V)

Consider a perturbation of the form

pﬁ(”avvx) :p(u,v,x)(l +€f(”>)v (Zp(u)f(u) :0)'

For the second derivative to be negative, it must be that the second derivative
of the term
d2

S H(Y) — HZ))y 0
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IDEA OF PROOF (CNTD...)

Alternately, rearrange the right hand side as

(1 =N(H(Z) - H(Y))-H(Z|V) + H(U|V)-H(U|Y) = (a = 1)H(Y|U)

Consider a perturbation of the form

Pe(u,v,x) = pu, v, x)(1+eg(v),  (D_p(V)g(v) =

For the second derivative to be negative, it must be that the second derivative
of the term

d2
& IH(Z) ~ H(Y)Zy <0
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OBSERVATION

For a fixed channel ¢(y, z|x) the term H(Y) — H(Z) depends only on p(x).

Hence, if there exists f(«) and g(v) such that p.(x) = p.(x) for all x € X, then
one would need to have

d2
o H(Y) ~ H@Z)] g =0.
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OBSERVATION
For a fixed channel ¢(y, z|x) the term H(Y) — H(Z) depends only on p(x).

Hence, if there exists f(«) and g(v) such that p.(x) = p.(x) for all x € X, then
one would need to have

dZ
p) [H(Y) — H(Z)] —o = 0.

This will in turn force the convex terms to have zero second derivative as well.
As a consequence, it will turn out that the expression
—(a—=NH(Y) = H(Z)+ ad(U;Y)+1(V;Z) — I(U; V)

will remain unchanged by either of these perturbations.
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OBSERVATION
For a fixed channel ¢(y, z|x) the term H(Y) — H(Z) depends only on p(x).

Hence, if there exists f(«) and g(v) such that p.(x) = p.(x) for all x € X, then
one would need to have

dZ
p) [H(Y) — H(Z)] —o = 0.

This will in turn force the convex terms to have zero second derivative as well.
As a consequence, it will turn out that the expression
—(a—=NH(Y) = H(Z)+ ad(U;Y)+1(V;Z) — I(U; V)

will remain unchanged by either of these perturbations.

Set e large enough so that the support of U or V reduces by one.
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CONDITIONS FOR EXISTENCE OF f(u), g(v)

Q@ >, pluv,x)f(u) =3, puvx)gl) Vx € X.
e From the condition: p.(x) = p.(x) forall x € X.

2] Zu,v,xp(uv v./x)f(u) =0.

e From the condition: p.(x) is a valid probability distribution.

0 Zu,v,xp(uv v./x)g(v) =0.

e From the condition: p.(x) is a valid probability distribution.

So there are || X|| + 1 linear constraints on a vector of size ||U|| + || V||.

A non-trivial solution exists when ||U|| + || V|| > || X|| + 1.
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COMMENTS

It is reasonably straightforward to map this bound on auxiliaries to Marton’s
inner bound.

The bound ||W|| < || X|| + 4 comes from convexification (traditional
Caratheodory based arguments)

This bound seems to indicate a trade-off between communicating with one
receiver vs. the other

@ In some sense, the essence of broadcast channel

C. Nair (CUHK) Research

Feb 26, 2014 15/16



COMMENTS

It is reasonably straightforward to map this bound on auxiliaries to Marton’s
inner bound.

The bound ||W|| < || X|| + 4 comes from convexification (traditional
Caratheodory based arguments)

This bound seems to indicate a trade-off between communicating with one
receiver vs. the other

@ In some sense, the essence of broadcast channel

One can extract more properties of extremal p(u, v, x) from the argument:
consider the Hessian H (of size || X|| — 1) of the mapping
p(x) = H(Y) — H(Z)

@ ||U|| — 1 is at most number of negative eigenvalues of H

@ ||V]| — I is at most number of positive eigenvalues of H
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CONCLUSION

@ Cover introduced the broadcast channel

o In that he talked about the Spanish-English channel (randomized
time-division)
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@ Cover introduced the broadcast channel

o In that he talked about the Spanish-English channel (randomized
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achievable regions using auxiliary random variables

@ After trying hard and determining the extremal auxiliary random
variables, we see that regions revert to randomized time-division (binary)
and an as yet undetermined generalization of randomized time-division.
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CONCLUSION

@ Cover introduced the broadcast channel

o In that he talked about the Spanish-English channel (randomized
time-division)

e Later Marton and Cover-van der Meulen came up with improved
achievable regions using auxiliary random variables

@ After trying hard and determining the extremal auxiliary random
variables, we see that regions revert to randomized time-division (binary)
and an as yet undetermined generalization of randomized time-division.

@ May be there is a story behind extremal auxiliary random variables that
will shed light into decades long open problems.

Thank You
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