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Network Communication

•  Network: represent by a graph

•  Example: network of 3 networks

•  Line, e.g., an ethernet bus

–  Single-path routing common for 
simplicity, control, security

•  Star, e.g., a radio network cell

–  Hub controls and monitors

–  Scalable, can isolate failures

•  Ring, e.g., an optical network

–  Two paths protect against failures
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n  Wireline: edge capacity constraints Cu,v for edge (u,v)



n  Nodes can also be bottlenecks, e.g., processor energy, 
speed, bus bandwidth constraints. Capacity Cu for node u
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n  Broadcast constraint via Xu rather than Xu,u-1 and Xu,u+1

n  Time-frequency slots: no interference

n  General: add interference via Yu rather than Yu-1,u and Yu+1,u

Wireless with Broadcast Channels (BCs)
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n  Traffic Sessions: u→D(u)={v(1),…,v(L)}, rate R(u→D(u))

n  Unicast: up to n(n-1) sessions between node-pairs

n  Broadcast: n sessions (one node to all other nodes)

n  Multicast: n(2n-1-1) sessions (one node u to a node set D(u))

n  Node constraints: can place sources & sinks at different 
sub-nodes for different problems

Traffic Sessions
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n  Network coding helps: many “butterflies”

n  Guess: Routing, copying, and “butterfly” binary linear 
network coding is optimal. For equal-length packets:

2) Wireline: How to Communicate?
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n  Let:

Non-uniform Packet Lengths and Rates
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Notes
n  Method seems simple but requires careful control. 

Each node u treats 8 sets of messages differently
1)  Left-to-right (LR) messages through node u
2)  Right-to-left (RL) messages through node u
3)  Left-to-right (LRu) messages also destined for u
4)  Right-to-left (RLu) messages also destined for u
5)  L-to-R and R-to-L messages “stopping” at node u (u)
6)  Node u messages going to left and right (u,LR) 
7)  Node u messages going to right (u,R)
8)  Node u messages going to left (u,L)

n  Converse:

n  Classic cut bounds insufficient
n  Progressive edge-cut bounds give the capacity 

(and include classic cut bounds)
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3) Progressive Edge Cuts (Kramer-Savari ‘06)

n  Consider a general edge set E and session set S

n  Initialize: remove (1) edges in E; (2) edges of sources not in S; 
(3) edges out of nodes directed-sense1 disconnected from S

n  Repeat: test if an s in S is undirected-sense2 disconnected from any of 
its sinks. If so, remove s and then edges out of nodes directed-sense1 
disconnected from the remaining sources.

n  Successful removal of all sources: ΣkεS Rk ≤ ΣeεE Ce

n  Example: E={(1,3),(2,3)} and S={s1,s2}:  R1+R2≤2 if Ce=1 for all e
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1based on functional dependencies 
2based on fd-separation in functional dependence graphs (Kramer ‘98)
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n  Edges: get basic routing rates (cf. classic cut-set bound)

n  Nodes: node u incoming and outgoing rates plus 

max(L→R rates, R→L rates) (see graph on p. 8):

Line Network Rate Constraints

ΣD(u) R(u → D(u)) + Σv ΣTraffic stops at u R(v → D(v)) 

+ max(Σi=1..u-1 ΣD(i) with a node in {u+1..n} R(i → D(i)),

Σi=u+1..n ΣD(i) with a node in {1..u-1} R(i → D(i))) ≤ Cu

Σi=1..u ΣD(i) with a node in {u+1..n} R(i → D(i)) ≤ Cu,u+1      (L→R)

Σi=u..n ΣD(i) with a node in {1..u-1} R(i → D(i)) ≤ Cu,u-1       (R→L)
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n  Bound for node u: choose E={(ui,uo)} and 
S={L→R sources across u} U {u incoming and outgoing sources}

n  Example: u=3 with E={(3i,3o)}

n  Remove (3i,3o); s right of node 3 and s left of node 3 having sinks left 
of node 3 only; edges right of u and (3o,2i)

n  Can remove all sources including node 3 outgoing sources

n  Gives new (non-classic) L→R bounds; similarly get new R→L bounds; 
these bounds, combined with the classic cut bounds, define the 
multiple-multicast capacity region

Application of Edge Cuts to Lines
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n  Problem: capacity of BCs with feedback is unknown

n  Partial resolution: capacity is known for some cases

n  orthogonal channels

n  deterministic channels

n  physically degraded channels, including 
physically degraded Gaussian BCs [El Gamal, 1978)

n  Do the coding/converse methods extend to our networks?

n  Answer: yes! See our paper “Network coding for line 
networks with broadcast channels,” Entropy, vol. 14, 2012

n  Paper gives a general achievable region, and converses for 
the above cases and for packet erasure channels

4) What about Wireless?
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Notes: the Progressive Edge Cut Tool
n  Includes classic cuts as special cases
n  Applies to network coding (a classic edge-cut bound does not)
n  Generalizes naturally to wireless networks to include any coding

n  Wireless example below: using E={(1,3),(2,3)} and S={1,2} gives

R1 ≤ min[I(X1;Y2Y3|X2X3),I(X1X2;Y3|X3)] 
R2 ≤ min[I(X3;Y1|X1),I(X2;Y3|X1X3)] 
R1+R2 ≤ I(X1X2;Y3|X3) 
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Summary

Line Networks:

§  even wireline problems require careful coding and have 

sophisticated capacity regions;

§  ideas extend to certain broadcasting scenarios;

§  for general BCs: we first need the capacities of BCs with 

(generalized) feedback;

§  including interference will be even tougher!
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Classic Cut-Set Bound
n  Partition nodes into two sets N and NC

n  Let S be the set of sessions originating in N with a sink in NC

n  Cut E is the set of edges starting in N and ending in NC

n  Classic cut bound: ΣkεS Rk ≤ ΣeεE Ce

n  Example: ring with 2 unicast sessions and unit-edge capacities. 
We have:  R1≤2, R2≤1 
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Line Networks with Edge Constraints Only

•  Routing: bounds for (u,u+1) and (u+1,u): 
 


•  Classic cut-set bound

–  For cut {(u,u+1)} is just (L→ R)

–  For cut {(u+1,u)} is just (R→ L)

•  So routing (+ copying for multicast) is rate-optimal 

Σi=1..u ΣD(i) with a node in {u+1..n} R(i → D(i)) ≤ Cu,u+1      (L→R)

Σi=u+1..n ΣD(i) with a node in {1..u} R(i → D(i)) ≤ Cu+1,u      (R→L)
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fd-Separation (Kramer ‘98)

n  Let A, B and C be vectors whose entries are RVs (vertices) of a FDG

n  Success after the following implies I(A ; B | C) = 0 (cf. Pearl 1988)

n  Consider only vertices and edges met when moving backward from the 
vertices in A, B, or C (“causality”)

n  Remove the outgoing edges of vertices disconnected from the sources 
in a directed sense

n  Check if there is no undirected path from “A” to “B”

n  Ex: I(W1 ; Ŵ1 | Y2,3 Y1,3  Z3,1) = 0 

I(W2 ; Ŵ2 | Y2,3 Y1,3  Z3,1 W1) = 0


