

Network Coding for Line Networks with Broadcast Channels

Gerhard Kramer* and Sadegh Tabatabaei Yazdi** *Technische Universität München, Germany **Corporate R&D, Qualcomm, San Diego, CA

> Talk at the 2014 Sino-German Workshop Shenzhen, China March 4, 2014

Network Communication

- Network: represent by a graph
- Example: network of 3 networks
- Line, e.g., an ethernet bus
 - Single-path routing common for simplicity, control, security
- Star, e.g., a radio network cell
 - Hub controls and monitors
 - Scalable, can isolate failures
- Ring, e.g., an optical network
 - Two paths protect against failures

1) Models

Wireline: edge capacity constraints C_{u,v} for edge (u,v)

 Nodes can also be bottlenecks, e.g., processor energy, speed, bus bandwidth constraints. Capacity C_u for node u

Wireless with Broadcast Channels (BCs)

- Broadcast constraint via X_u rather than X_{u,u-1} and X_{u,u+1}
- Time-frequency slots: no interference
- General: add interference via Y_u rather than $Y_{u-1,u}$ and $Y_{u+1,u}$

Traffic Sessions

- Traffic Sessions: $u \rightarrow D(u) = \{v(1), \dots, v(L)\}$, rate $R(u \rightarrow D(u))$
 - Unicast: up to n(n-1) sessions between node-pairs
 - Broadcast: n sessions (one node to all other nodes)
 - <u>Multicast</u>: n(2ⁿ⁻¹-1) sessions (one node u to a node set D(u))
- Node constraints: can place sources & sinks at different sub-nodes for different problems

2) Wireline: How to Communicate?

- Network coding helps: many "butterflies"
- Guess: Routing, copying, and "butterfly" binary linear network coding is optimal. For equal-length packets:

Non-uniform Packet Lengths and Rates

Let:

$$A \oplus B = \begin{cases} [A_1 \oplus B_1, \dots, A_m \oplus B_m] & m \le n \\ [A_1 \oplus B_1, \dots, A_n \oplus B_n, A_{n+1}, \dots, A_m] & m > n \end{cases}$$

$$A \otimes B = \begin{cases} [A_1 \oplus B_1, \dots, A_m \oplus B_m, B_{m+1}, \dots, B_n] & m \le n \\ [A_1 \oplus B_1, \dots, A_n \oplus B_n, A_{n+1}, \dots, A_m] & m > n \end{cases}$$

Notes

- Method seems simple but requires careful control.
 Each node u treats 8 sets of messages differently
 - 1) Left-to-right (LR) messages through node u
 - 2) Right-to-left (RL) messages through node u
 - 3) Left-to-right (LRu) messages also destined for u
 - 4) Right-to-left (RLu) messages also destined for u
 - 5) L-to-R and R-to-L messages "stopping" at node u (u)
 - 6) Node u messages going to left and right (u,LR)
 - 7) Node u messages going to right (u,R)
 - 8) Node u messages going to left (u,L)
- Converse:
 - Classic cut bounds insufficient
 - Progressive edge-cut bounds give the capacity (and include classic cut bounds)

3) Progressive Edge Cuts (Kramer-Savari '06)

- Consider a general edge set E and session set S
- <u>Initialize</u>: remove (1) edges in E; (2) edges of sources not in S;
 (3) edges out of nodes <u>directed-sense</u>¹ disconnected from S
- <u>Repeat</u>: test if an s in S is <u>undirected-sense</u>² disconnected from any of its sinks. If so, remove s and then edges out of nodes <u>directed-sense</u>¹ disconnected from the remaining sources.
- Successful removal of all sources: $\Sigma_{k \epsilon S} R_k \leq \Sigma_{e \epsilon E} C_e$
- Example: $E = \{(1,3), (2,3)\}$ and $S = \{s_1, s_2\}$: $R_1 + R_2 \le 2$ if $C_e = 1$ for all e

Line Network Rate Constraints

Edges: get basic routing rates (cf. classic cut-set bound)

$$\begin{split} & \Sigma_{i=1..u} \quad \Sigma_{D(i) \text{ with a node in } \{u+1..n\}} \ \mathsf{R}(i \to D(i)) \leq C_{u,u+1} \quad (L \to \mathsf{R}) \\ & \Sigma_{i=u..n} \quad \Sigma_{D(i) \text{ with a node in } \{1..u-1\}} \ \mathsf{R}(i \to D(i)) \leq C_{u,u-1} \quad (\mathsf{R} \to \mathsf{L}) \end{split}$$

 Nodes: node u incoming and outgoing rates <u>plus</u> max(L→R rates, R→L rates) (see graph on p. 8):

$$\Sigma_{D(u)} \text{ R}(u \rightarrow D(u)) + \Sigma_v \Sigma_{\text{Traffic stops at } u} \text{ R}(v \rightarrow D(v))$$

+ max(
$$\Sigma_{i=1..u-1}$$
 $\Sigma_{D(i)}$ with a node in {u+1..n} $R(i \rightarrow D(i))$,

$$\Sigma_{i=u+1..n} \Sigma_{D(i) \text{ with a node in } \{1..u-1\}} R(i \rightarrow D(i))) \leq C_u$$

Application of Edge Cuts to Lines

- Bound for node u: choose E={(ui,uo)} and S={L→R sources across u} U {u incoming and outgoing sources}
- Example: u=3 with E={(3i,3o)}
 - Remove (3i,3o); s right of node 3 and s left of node 3 having sinks left of node 3 only; edges right of u and (3o,2i)
 - Can remove all sources including node 3 outgoing sources
 - Gives new (non-classic) L→R bounds; similarly get new R→L bounds; these bounds, combined with the classic cut bounds, define the multiple-multicast capacity region

4) What about Wireless?

- Problem: capacity of BCs with feedback is unknown
- Partial resolution: capacity is known for some cases
 - orthogonal channels
 - <u>deterministic</u> channels
 - <u>physically degraded</u> channels, including physically degraded <u>Gaussian</u> BCs [El Gamal, 1978)
- Do the coding/converse methods extend to our networks?
- Answer: <u>yes!</u> See our paper "Network coding for line networks with broadcast channels," Entropy, vol. 14, 2012
- Paper gives a general achievable region, and converses for the above cases and for <u>packet erasure</u> channels

Notes: the Progressive Edge Cut Tool

- Includes classic cuts as special cases
- Applies to network coding (a classic edge-cut bound does not)
- Generalizes naturally to wireless networks to include any coding
- Wireless example below: using E={(1,3),(2,3)} and S={1,2} gives

Summary

Line Networks:

- even wireline problems require careful coding and have sophisticated capacity regions;
- ideas extend to certain broadcasting scenarios;
- for general BCs: we first need the capacities of BCs with (generalized) feedback;
- including interference will be even tougher!

Extra Slides

Classic Cut-Set Bound

- Partition nodes into two sets N and N^C
- Let S be the set of sessions originating in N with a sink in N^C
- Cut E is the set of edges starting in N and ending in N^C
- Classic cut bound: $\Sigma_{k \epsilon S} R_k \leq \Sigma_{e \epsilon E} C_e$
- Example: ring with 2 unicast sessions and unit-edge capacities. We have: R₁≤2, R₂≤1

Line Networks with Edge Constraints Only

• <u>Routing</u>: bounds for (u,u+1) and (u+1,u):

$$\begin{split} & \sum_{i=1..u} \sum_{D(i) \text{ with a node in } \{u+1..n\}} R(i \to D(i)) \leq C_{u,u+1} \quad (L \to R) \\ & \sum_{i=u+1..n} \sum_{D(i) \text{ with a node in } \{1..u\}} R(i \to D(i)) \leq C_{u+1,u} \quad (R \to L) \end{split}$$

- Classic cut-set bound
 - For cut $\{(u,u+1)\}$ is just $(L \rightarrow R)$
 - For cut $\{(u+1,u)\}$ is just $(R \rightarrow L)$
- So routing (+ copying for multicast) is rate-optimal

fd-Separation (Kramer '98)

- Let <u>A</u>, <u>B</u> and <u>C</u> be vectors whose entries are RVs (vertices) of a FDG
- Success after the following implies $I(\underline{A}; \underline{B} | \underline{C}) = 0$ (cf. Pearl 1988)
 - Consider only vertices and edges met when moving backward from the vertices in <u>A</u>, <u>B</u>, or <u>C</u> ("causality")
 - Remove the outgoing edges of vertices disconnected from the sources in a directed sense
 - Check if there is no undirected path from "<u>A</u>" to "<u>B</u>"

