2014 Sino-German Workshop *Bridging Theory and Practice in Wireless Communications and Networking*

Shenzhen Research Institute, The Chinese University of Hong Kong March 4-7, 2014

Knowledge for Tomorrow

Random Access and Codes on Graphs: From Theory to Practice

Gianluigi Liva, gianluigi.liva@dlr.de

Institute for Communications and Navigation German Aerospace Center, DLR

Outline

[Coded Slotted Aloha](#page-18-0)

[Throughput Analysis](#page-49-0)

[From Theory to Practice](#page-55-0)

MAC Frame

Collision ≡ Erasure

 $Collision \equiv$ Erasure

Packet Copies ≡ Repetition Code

Collision ≡ Erasure

Packet Copies ≡ Repetition Code

Successive Interference Cancellation ≡ Iterative Erasure Decoding

Successive Interference Cancellation ≡

Successive Interference Cancellation ≡ Iterative Erasure Decoding

Successive Interference Cancellation ≡ Iterative Erasure Decoding

Outline

[Coded Slotted Aloha](#page-18-0)

[Throughput Analysis](#page-49-0)

[From Theory to Practice](#page-55-0)

[Conclusions](#page-65-0)

- Slotted Aloha (SA) [Abramson1970]: Adopted as the initial access scheme in both cellular terrestrial and satellite networks
- Diversity slotted Aloha (DSA) [Choudhury1983]: Packet repetition (twin
- Contention resolution diversity slotted Aloha (CRDSA) [Casini2007]: A

[Abramson1970] N. Abramson, "The Aloha system - another alternative for computer communications," in *Proc. of 1970 Fall Joint Computer Conf.*, 1970.

- Slotted Aloha (SA) [Abramson1970]: Adopted as the initial access scheme in both cellular terrestrial and satellite networks
- Diversity slotted Aloha (DSA) [Choudhury1983]: Packet repetition (twin replicas) to achieve a slight throughput enhancement at low loads
- Contention resolution diversity slotted Aloha (CRDSA) [Casini2007]: A

[Abramson1970] N. Abramson, "The Aloha system - another alternative for computer communications," in *Proc. of 1970 Fall Joint Computer Conf.*, 1970.

[Choudhury1983] G. Choudhury and S. Rappaport, "Diversity Aloha - a random access scheme for satellite communications," *IEEE Trans. Commun.*, Mar. 1983.

- Slotted Aloha (SA) [Abramson1970]: Adopted as the initial access scheme in both cellular terrestrial and satellite networks
- Diversity slotted Aloha (DSA) [Choudhury1983]: Packet repetition (twin replicas) to achieve a slight throughput enhancement at low loads
- Contention resolution diversity slotted Aloha (CRDSA) [Casini2007]: A more efficient use of the packet repetition

[Abramson1970] N. Abramson, "The Aloha system - another alternative for computer communications," in *Proc. of 1970 Fall Joint Computer Conf.*, 1970.

[Choudhury1983] G. Choudhury and S. Rappaport, "Diversity Aloha - a random access scheme for satellite communications," *IEEE Trans. Commun.*, Mar. 1983.

[Casini2007] E. Casini, R. D. Gaudenzi, and O. del Rio Herrero, "Contention resolution diversity slotted Aloha (CRDSA): An enhanced random access scheme for satellite access packet networks.," *IEEE Trans.Wireless Commun.*, Apr. 2007.

- Irregular repetition slotted Aloha (IRSA) [Liva2011]: Equivalence with codes on graphs
- Overall framework: Coded Slotted Aloha (CSA) [Paolini2011]
- IRSA achieves a throughput of 1 [packet/slot] [Narayanan2012]

[Liva2011] G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted Aloha," *IEEE Trans. Commun.*, Feb. 2011.

- Irregular repetition slotted Aloha (IRSA) [Liva2011]: Equivalence with codes on graphs
- Overall framework: Coded Slotted Aloha (CSA) [Paolini2011]
- IRSA achieves a throughput of 1 [packet/slot] [Narayanan2012]

[Liva2011] G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted Aloha," *IEEE Trans. Commun.*, Feb. 2011.

[Paolini2011] E. Paolini, G. Liva, and M. Chiani, "High Throughput Random Access via Codes on Graphs: Coded Slotted Aloha," IEEE ICC 2011.

- Irregular repetition slotted Aloha (IRSA) [Liva2011]: Equivalence with codes on graphs
- Overall framework: Coded Slotted Aloha (CSA) [Paolini2011]
- IRSA achieves a throughput of 1 [packet/slot] [Narayanan2012]

[Liva2011] G. Liva, "Graph-based analysis and optimization of contention resolution diversity slotted Aloha," *IEEE Trans. Commun.*, Feb. 2011.

[Paolini2011] E. Paolini, G. Liva, and M. Chiani, "High Throughput Random Access via Codes on Graphs: Coded Slotted Aloha," IEEE ICC 2011.

[Narayanan2012] K.R. Narayanan and H.F. Pfister "Iterative collision resolution for slotted Aloha: An optimal uncoordinated transmission policy," 2012 7th International Symposium on Turbo Codes and Iterative Information Processing. Aug. 2012.

- Frame-less Aloha with Successive Interference Cancellation (SIC) [Stefanovic2014]
-
- SIC Tree Algorithm [Yu2007]
- Zig-Zag and Sig-Sag decoding [Gollakota2008][Tehrani2011]

[Stefanovic2014] C. Stefanovic, P. Popovski, "Aloha Random Access that Operates as a Rateless Code," *IEEE Trans. Commun.*, Feb. 2014.

- Frame-less Aloha with Successive Interference Cancellation (SIC) [Stefanovic2014]
- IRSA with Multi-User Detection [Ghanbarinejad2013]
- SIC Tree Algorithm [Yu2007]
- Zig-Zag and Sig-Sag decoding [Gollakota2008][Tehrani2011]

[Stefanovic2014] C. Stefanovic, P. Popovski, "Aloha Random Access that Operates as a Rateless Code," *IEEE Trans. Commun.*, Feb. 2014.

[Ghanbarinejad2013] M. Ghanbarinejad and C. Schlegel, "Irregular repetition slotted Aloha with multiuser detection," in Proc. the 10th Annual Conf. Wireless On-demand Netw. Syst. Services, Mar. 2013.

- Frame-less Aloha with Successive Interference Cancellation (SIC) [Stefanovic2014]
- IRSA with Multi-User Detection [Ghanbarinejad2013]
- SIC Tree Algorithm [Yu2007]
- Zig-Zag and Sig-Sag decoding [Gollakota2008][Tehrani2011]

[Stefanovic2014] C. Stefanovic, P. Popovski, "Aloha Random Access that Operates as a Rateless Code," *IEEE Trans. Commun.*, Feb. 2014.

[Ghanbarinejad2013] M. Ghanbarinejad and C. Schlegel, "Irregular repetition slotted Aloha with multiuser detection," in Proc. the 10th Annual Conf. Wireless On-demand Netw. Syst. Services, Mar. 2013.

[Yu2007] Y. Yu and G. B. Giannakis,"High-throughput random access using successive interference cancellation in a tree algorithm," *IEEE Trans. Inf. Theory*, Dec. 2007.

- Frame-less Aloha with Successive Interference Cancellation (SIC) [Stefanovic2014]
- IRSA with Multi-User Detection [Ghanbarinejad2013]
- SIC Tree Algorithm [Yu2007]
- Zig-Zag and Sig-Sag decoding [Gollakota2008][Tehrani2011]

[Stefanovic2014] C. Stefanovic, P. Popovski, "Aloha Random Access that Operates as a Rateless Code," *IEEE Trans. Commun.*, Feb. 2014.

[Ghanbarinejad2013] M. Ghanbarinejad and C. Schlegel, "Irregular repetition slotted Aloha with multiuser detection," in Proc. the 10th Annual Conf. Wireless On-demand Netw. Syst. Services, Mar. 2013.

[Yu2007] Y. Yu and G. B. Giannakis,"High-throughput random access using successive interference cancellation in a tree algorithm," *IEEE Trans. Inf. Theory*, Dec. 2007.

[Gollakota2008] S. Gollakota and D. Katabi, "Zigzag decoding: combating hidden terminals in wireless networks," in Proc. SIGCOMM, 2008.

[Tehrani2011] A. Tehrani, A. Dimakis, and M. Neely, "Sigsag: Iterative detection through soft message-passing," *IEEE Trans. Signal Process.*, Dec. 2011.

Coded Slotted Aloha System Model (Repetition Codes)

- a. Collisions are destructive
- b. In absence of interference, packets are decoded with high probability
- c. Packet replicas have a **pointer** to the their respective copies
- d. If packet is successfully decoded, the pointer is extracted and the interference contributions caused by the replicas on the corresponding slots are removed
- e. The procedure is iterated until no more clean packets are discovered

Coded Slotted Aloha System Model (Repetition Codes)

• *M* users, each attempting one packet transmission within a frame

 $G = \frac{M}{M}$ *N*SA

- Number of slots N_{SA}
- Load given by

Coded Slotted Aloha System Model (Repetition Codes)

- *T* is the throughput in terms of successful packet transmissions per slot
- Replicas shall not be counted...

Coded Slotted Aloha Irregular Repetition Slotted Aloha (IRSA)

- Bipartite graph representation
	- \blacktriangleright slots \leftrightarrow sum (slot) nodes
	- \blacktriangleright packets \leftrightarrow burst (packet) nodes
	- \blacktriangleright replicas \leftrightarrow edges

Coded Slotted Aloha Irregular Repetition Slotted Aloha(IRSA)

- Bipartite graph representation
	- \blacktriangleright slots \leftrightarrow sum (slot) nodes
	- \blacktriangleright packets \leftrightarrow burst (packet) nodes
	- \blacktriangleright replicas \leftrightarrow edges

Coded Slotted Aloha Irregular Repetition Slotted Aloha (IRSA)

- Bipartite graph representation
	- \blacktriangleright slots \leftrightarrow sum (slot) nodes
	- \blacktriangleright packets \leftrightarrow burst (packet) nodes
	- \blacktriangleright replicas \leftrightarrow edges

Coded Slotted Aloha Irregular Repetition Slotted Aloha (IRSA)

- Bipartite graph representation
	- \blacktriangleright slots \leftrightarrow sum (slot) nodes
	- \blacktriangleright packets \leftrightarrow burst (packet) nodes
	- \blacktriangleright replicas \leftrightarrow edges

Coded Slotted Aloha General Case

- Combines *time-hopping multiple access* (THMA) [Lam1990] and successive interference cancellation (SIC).
- Each user divides the packet in *k* slices
- Slices encoded by an (n_h, k) erasure correcting code C_h .
- The code \mathcal{C}_h is picked randomly from a set $\mathcal{C} = {\mathcal{C}_1, \ldots, \mathcal{C}_{n_c}}$ of component codes, all with the same dimension *k*.
- Encoded slices transmitted in *n^h* slots picked at random.

[Lam1990] A. Lam and D. Sarwate, "Time-Hopping and Frequency-Hopping Multiple-Access Packet Communications," *IEEE Trans. Commun.*, vol. 38, pp. 875–888, June 1990.

Coded Slotted Aloha General Case

- The code C_h is picked with probability P_h
- Rate of the scheme:

$$
R = \frac{k}{\sum_{h=1}^{n_c} P_h n_h} = \frac{k}{\bar{n}}
$$

- For a fixed frame duration, the frame is composed of $N_{CSA} = kN_{SA}$ slots
- Iterative SIC process is combined with local MAP erasure decoding

- Asymptotic setting:
	- \blacktriangleright *N*_{SA} = *N*_{CSA} / $k \to \infty$
	- $M = G \cdot N_{SA} \rightarrow \infty$
- Analyze the behavior of iterative SIC with density evolution (well-established analysis tool in the field of modern coding theory)

Threshold phenomenon

For a given $\mathcal{C} = \{\mathcal{C}_1, \ldots, \mathcal{C}_{n_c}\}$ and a given $\textbf{\textit{P}}=\{P_h\}_{h=1,...,n_c}$ there exists $G^*(\mathcal{C}, P)$ s.t.

- \bullet for all $0 < G < G^{\ast}(\mathcal{C}, \boldsymbol{P})$, the residual packet erasure probability tends to zero as the number of IC iterations tends to infinity
- for all $G > G^*(C, P)$, decoding fails with a probability always bounded away from 0
- \bullet The asymptotic threshold G^* depends on the component codes and on
- Look for C and *P* leading large thresholds, allowing transmissions with

Threshold phenomenon

For a given $\mathcal{C} = \{\mathcal{C}_1, \ldots, \mathcal{C}_{n_c}\}$ and a given $\textbf{\textit{P}}=\{P_h\}_{h=1,...,n_c}$ there exists $G^*(\mathcal{C}, P)$ s.t.

- \bullet for all $0 < G < G^{\ast}(\mathcal{C}, \boldsymbol{P})$, the residual packet erasure probability tends to zero as the number of IC iterations tends to infinity
- for all $G > G^*(C, P)$, decoding fails with a probability always bounded away from 0
- The asymptotic threshold *G* ∗ depends on the component codes and on their probabilities
- Look for C and *P* leading large thresholds, allowing transmissions with

Threshold phenomenon

For a given $\mathcal{C} = \{\mathcal{C}_1, \ldots, \mathcal{C}_{n_c}\}$ and a given $\textbf{\textit{P}}=\{P_h\}_{h=1,...,n_c}$ there exists $G^*(\mathcal{C}, P)$ s.t.

- \bullet for all $0 < G < G^{\ast}(\mathcal{C}, \boldsymbol{P})$, the residual packet erasure probability tends to zero as the number of IC iterations tends to infinity
- for all $G > G^*(C, P)$, decoding fails with a probability always bounded away from 0
- The asymptotic threshold *G* ∗ depends on the component codes and on their probabilities
- Look for C and *P* leading large thresholds, allowing transmissions with vanishing error probability for any load $G < G^*(\mathcal{C}, P)$

Density Evolution Equations

- At the ℓ -th IC iteration, let
	- \blacktriangleright p_ℓ be the average message erasure probability from the SNs to the BNs
	- \rightarrow q_{ℓ} be the average message erasure probability from the BNs to the SNs

$$
q_{\ell} = \frac{1}{\bar{n}} \sum_{h=1}^{n_c} P_h \sum_{t=0}^{n_h - 1} p_{\ell-1}^t (1 - p_{\ell-1})^{n_h - 1 - t} \left[(n_h - t) \tilde{e}_{n_h - t}^{(h)} - (t+1) \tilde{e}_{n_h - 1 - t}^{(h)} \right]
$$

$$
p_{\ell} = 1 - \exp\left(-\frac{G}{R} q_{\ell}\right)
$$

where $\tilde{e}^{(h)}_g$ are the component codes information functions

$$
G^*(\mathcal{C}, P) = \sup\{G \ge 0 : p_{\ell} \to 0 \text{ as } \ell \to \infty, \ p_0 = 1\}
$$

Outline

[Coded Slotted Aloha](#page-18-0)

[Throughput Analysis](#page-49-0)

[From Theory to Practice](#page-55-0)

[Conclusions](#page-65-0)

Threshold Optimization

• Distribution profiles *P* and corresponding thresholds *G*∗(*P*) reported for optimized IRSA and CSA (with $k = 2$) schemes under the random code hypothesis

Throughput Analysis for Optimized Profiles

- $N_{SA} = 500, N_{CSA} = 1000$
- Specific choice of linear block codes in the set C
- • 6 codes, all with $k = 2$, and *n* ∈ {4, 5, 8, 9, 12}

Coded Slotted Aloha without Feedback Channel

- Packet Loss Rate for Coded SA based on optimized profiles
- $N_{SA} = 5000, 1000, 500,$ maximum iteration count set to 100
- • Throughput close to 1 packet/frame without feedback channel - no retransmissions!!!

$$

Theorem

For rational *R* and $0 < R \leq 1$, let $\mathbb{G}(R)$ be the unique positive solution to the equation

$$
G=1-e^{-G/R}
$$

in $[0,1).$ Then, the threshold $G^*({\mathcal{C}},\boldsymbol{P})$ fulfills

 $G^*(\mathcal{C}, P) < \mathbb{G}(R)$

for *any* choice of $C = \{C_1, C_2, \ldots, C_{n_c}\}$ and P associated with a rate R

$$

 \mathcal{W} , \mathcal{W} , \mathcal{W} , \mathcal{W} , \mathcal{W} , \mathcal{W} , \mathcal{W} are \mathcal{W} are \mathcal{W} are \mathcal{W} are \mathcal{W} and \mathcal{W} are \mathcal{W} are \mathcal{W} are \mathcal{W} are \mathcal{W} are \mathcal{W} and \mathcal{W} are \mathbb{R} is the state of \mathbb{R} . The state of \mathbb{R} is 10, 11 (+) and 11 (+) are based on \mathbb{R} are based on \mathbb{R} . If \mathbb{R} is 11 (+) and 11 (+) are based on \mathbb{R} and 11 (+) and 11 (+) and 11 (+) and on MDS codes (k = 4). Regular distributions based on (k + 1, k) SPC codes

are reported as well (◎).

Outline

[Coded Slotted Aloha](#page-18-0)

[Throughput Analysis](#page-49-0)

[From Theory to Practice](#page-55-0)

[Conclusions](#page-65-0)

A Closer Look at Successive Interference Cancellation Packet Format

- 32-symbols preamble for detection and initial channel estimation
- 256-bit payload including 16-bits header for replica pointer
- 256 parity bits
- QPSK, square-root raised cosine matched filter (MF), roll-off 0.2

A Closer Look at Successive Interference Cancellation Signal Processing

- Perfect power control
- *l* users attempt transmission within the same slot
- Complex baseband signal transmitted by the *i*-th user

$$
u^{(i)}(t) = \sum_{v=1}^{N_s} b_v^{(i)} \gamma(t - vT_s)
$$

where N_s is the number of symbols per segment, $\{b^{(i)}_v\}$ is the sequence of symbols and *T^s* is the symbol period

• Pulse shape $\gamma(t) = \mathcal{F}^{-1}\left\{\sqrt{\text{RC}(f)}\right\}$, where $\text{RC}(f)$ the frequency response of the MF

A Closer Look at Successive Interference Cancellation Signal Processing

- Each contribution is received with a random delay ϵ_i , a random frequency offset $f_i \sim \mathcal{U}[-f_{\text{max}}, f_{\text{max}}]$ and a random phase offset $\phi_i \sim \mathcal{U}[0, 2\pi)$
- After the MF,

$$
r(t) = \sum_{i=1}^{l} z^{(i)}(t) * h(t) + n(t)
$$

where $n(t)$ is the Gaussian noise contribution, $h(t)=\gamma^*(-t)$ is the MF impulse response and

$$
z^{(i)}(t) = \sum_{\nu=1}^{N_s} b_{\nu}^{(i)} \gamma(t - \nu T_s - \epsilon_i) \exp(j2\pi f_i t + j\phi_i)
$$

A Closer Look at Successive Interference Cancellation Signal Processing: Assumption

• Frequency shifts that are small w.r.t. the signal bandwidth (i.e., $f_{\text{max}}T_s \ll 1$). Thus

$$
r(t) \approx \sum_{i=1}^{l} \tilde{u}^{(i)}(t - \epsilon_i) e^{j2\pi f_i t + j\phi_i} + n(t)
$$

where $\tilde{u}^{(i)}(t)$ is the response of the MF to $u^{(i)}(t)$

- $\tilde{u}^{(1)}(t)$ ss the useful term and $\tilde{u}^{(2)}(t), \tilde{u}^{(3)}(t), \ldots, \tilde{u}^{(l)}(t)$ are the interference contributions to be cancelled
- First, estimate the set of parameters $\{\epsilon_i, f_i, \phi_i\}$, for $i \in \{2, \ldots, l\}$

A Closer Look at Successive Interference Cancellation Signal Processing: Assumption

- Typically, in satellite applications ϵ_i and f_i can be accurately estimated on the recovered replicas (i.e., their values remain constant through the frame)
- \bullet ϕ_i , which may not be stable from a slot to slot.
- Recall that the symbol sequences $\{b_v^{(i)}\}$ (for $i \in \{2...l\}$) are known at the receiver

A Closer Look at Successive Interference Cancellation

- Denote by $y^{(i)}(t)$ the signal at the input of the phase estimator for the *i*-th contribution
- In the first step, the input signal is given by $y^{(2)}(t) = r(t)$ and the phase of the first interfering user is estimated as

$$
\hat{\phi}_2 = \arg \left\{ \sum_{\nu=1}^{N_s} y_{\nu}^{(2)} \left(b_{\nu}^{(2)} \right)^* \right\}
$$

with

$$
y_{\nu}^{(2)} = y^{(2)}(\nu T_s + \epsilon_2) e^{-j2\pi f_2(\nu T_s + \epsilon_2)}.
$$

• After the estimation of the phase offset for the first interferer, the $\tilde{u}^{(2)}(t-\epsilon_2)e^{j2\pi f_2 t + j\hat{\phi}_2}$ and its contribution can be removed, i.e.

$$
y^{(3)}(t) = y^{(2)}(t) - \tilde{u}^{(2)}(t - \epsilon_2)e^{j2\pi f_2 t + j\hat{\phi}_2}.
$$

A Closer Look at Successive Interference Cancellation

- The SIC proceeds serially
- After the cancellation of the *l* − 1 contributions the residual signal, denoted by $y^{(1)}(t)$, is given by the 1-st user's contribution, the noise $n(t)$, and a residual interference term $v(t)$ due to the imperfect estimation of the interferers' phases (causing imperfect SIC), i.e.,

$$
y^{(1)}(t) = \tilde{u}^{(1)}(t - \epsilon_1)e^{j2\pi f_1 t + j\phi_1} + n(t) + \nu(t)
$$

A Closer Look at Successive Interference Cancellation

- LDPC code over \mathbb{F}_{256}
- $k = 256$ bits and $n = 512$ bits
- The users are coarsely synchronized
- $f_i \sim \mathcal{U}$ [− $f_{max}, +f_{max}$]
- $f_{max} = 0.01 \times B_s$, being B_s the symbol rate
- Random phase offset for each replica
- • The modulation is QPSK

Coded Slotted Aloha in Practice

- The repetition-based variant of CSA is the random access method adopted by the 2nd generation of the Digital Video Broadcasting (DVB) Return Channel via Satellite (RCS) standard for interactive satellite services
- DLR owns a SDR (ETTUS)-GPU-based gateway (implementing a similar random access scheme employing spreading in addition, ETSI S-MIM standard) working at 10 Mbps
- We have developed together with TUM a multi-user detector on a SDR-GPU platform, which may further enhance the performance enhanced random access protocols (destructive collisions)

Outline

[Coded Slotted Aloha](#page-18-0)

[Throughput Analysis](#page-49-0)

[From Theory to Practice](#page-55-0)

Conclusion

- Coded Slotted Aloha expresses most of its potential on a collision channel without feedback, thanks to its high reliability
- Shares several aspects with LDPC codes (and their generalization) over erasure channels
- Analogy:

 $FFC \Leftrightarrow ARO$ CSA ⇔ SA

• The CSA graph-based random access scheme can approach an efficiency of 1 packet/slot without retransmissions

Reference

- G. Liva, "Graph-Based Analysis and Optimization of Contention Resolution Diversity Slotted Aloha," IEEE Trans. Commun., Feb., 2011.
- E. Paolini, G. Liva, and M. Chiani, "High Throughput Random Access via Codes on Graphs: Coded Slotted Aloha," IEEE ICC 2011.
- E. Paolini, G. Liva, M. Chiani, "Graph-Based Random Access for the Collision Channel without Feed-Back: Capacity Bound," IEEE Globecom 2011.
- G. Liva, E. Paolini, M. Lentmaier, M.Chiani,"Spatially-Coupled Random Access on Graphs," IEEE ISIT 2012.
- E. Paolini, G. Liva, M. Chiani, "Coded Slotted Aloha: A Graph-Based Method for Uncoordinated Multiple Access," submitted to IEEE Trans. Inf. Theory, available on Arxiv.org.

Thank you!

Approaching the Upper Bound: Spatially Coupled CSA

- Idea: Exploit the spatial coupling effect within the CSA framework to improve the threshold.
- Consider the case where all users adopt the same repetition code (of length *d*) for each transmission.
- Observe a threshold saturation effect also for spatially coupled CSA.

Block and Convolutional CSA Schemes Performance Comparison

Threshold Saturation Effect

- Genie-Aided MAP Decoding: The bipartite graph is revealed to the decoder by a genie, which enables MAP erasure decoding at the gateway.
- We compare the thresholds under
	- Block regular CSA ($G_{\text{block}}^{\text{IT}}$)
	- Convolutional CSA ($G_{\text{conv}}^{\text{IT}}$)
- Genie-aided decoding $(\overline{G}_{\text{block}}^{\text{MAP}})$
- • Upper bound (*G*∗)

[Kudekar2011] S. Kudekar, T. Richardson, R. Urbanke, "Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC," *IEEE Trans. IT*, Feb. 2011.

