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Past and Future
Bridging Theory and Practice in Cellular Systems

I Bridges of old
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I Het-Nets/Cognitive Radio → enough (?)
I Interference Alignment → scalability (?)
I Full Duplex → maturity (?)
I Massive MIMO → expensive (!)
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Coordinated Multipoint - CoMP

eNB

eNB
eNB

X2

UE

UE

I Base stations coordinate with each
other.

I No receiver cooperation.

I Multiple antennas in transmit and
receive side.

I BSs connected via backhaul and
CoMP can be perfromed:

I Joint Processing
I Coordinated Beamforming

I Network Architecture
I Centralized Approach
I Decentralized Approach



Issues with CoMP

I The need of tight synchronization between base stations.

I Signaling overhead on the air interface for the
cooperation/coordination of BSs.

I Backhaul speed and latency for the information exchange
between BSs

I Limitation in the number of cooperating base stations:
Clustering.

I Sensitivity of the channel information feedback from user
terminal to the BSs.



Approaching the problem

I We consider a multicell multiuser MIMO systems with
coordinating BSs.

I Broader network with conventional size and complexity power.

I Sufficient resources to estimate the channel.

I Consider three different problems

I Power Minimization Problem Energy Efficiency
I Max-min SINR Problem Quality of Service
I Sum Rate Maximization Problem Spectral Efficiency



Power Minimization Problem
Energy Efficiency

SP1(MISO) =


minimize

U,p

K∑
k=1

pk,

subject to SINRDL
k ≥ γk, 1 ≤ k ≤ K.

(1)



Max-Min SINR Problem
Quality of Service

SP2(MISO) =


maximize

U,p
min

1≤k≤K

SINRDL
k

γk

subject to
∑
k

pk ≤ Pmax

‖uk‖ = 1, 1 ≤ k ≤ K,

(2)



Sum-Rate Maximization Problem
Spectral Efficiency

SP3-MSE(MISO) =


minimize

U,p

K∑
k=1

wk
1

1 + SINRDL

subject to
∑
k

pk ≤ Pmax 1 ≤ k ≤ K.
(3)



MOTIVATION



Power Minimization Problem
Energy Efficiency

I Example 1: Power minimization problem [Yu&Lan 2007]

minimize
U,{uk}

α

subject to E|xk|2 ≤ αpk
SINRk ≥ γk,

given hk

TX : xN×1 =

K∑
k=1

skuk RX : yk = hk · x + zk

SINRk =
|hk · uk|2∑

j 6=k |hk · uk|2 + σ2

I N =
∑B
b=1Ntb TX antennas → MISO

I Fixed pn per-antenna target powers → how (?)
I Per user γk target SINRs → QoS balancing (?)
I Perfectly known hk for all users → overhead (!)
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Spectral Efficiency
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Spectral Efficiency
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I Perfectly known Hkj for all users → overhead (!)
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SOME TOOLS



System Model

Desired Signal

Intracell Interference

Intrercell Interference

n-th cell

k-th user

I The transmitted signal

x =

K∑
j=1

√
pjujsj

I The received signal

yk = hH
k

 K∑
j=1

√
pjujsj

+ zk

I The SINR of user k

ΦDL
k =

pk|hH
kuk|2

K∑
j=1,j 6=k

pj |hH
kuj |2 + σ2zk

.



Perron-Frobenius Theorem

I Characterizes eigenvectors and eigenvalues of non-negative
matrices.

I Possible solution for power minimization in wireless network.
I SINR Constraint

pk|hH
kuk|2

K∑
j=1,j 6=k

pj |hH
kuj |2 + σ2

zk

≥ γk. (4)

I The SINR constraint can be re-written as

pkGkk ≥ γk

 K∑
j=1,j 6=k

pjGkj + σ2
zk

 , (5)

where Gjk = |hjuk|2.



Perron-Frobenius Theorem

I We now define two matrices D and G

D =


γ1
G11

0 · · · 0

0 γ2
G22

· · · 0
...

...
. . .

...
0 0 · · · γK

GKK

 , G =


0 G12 · · · G1K

G21 0 · · · G2K

...
...

. . .
...

GK1 GK2 · · · 0

 ,

I The SINR constraint in the matrix form can be written as

(I−DG)p ≥ Dn,

where p = [p1, p2, · · · , pK ]T, and n = [σ2z1 , σ
2
z2 , · · · , σ

2
zk

]T.

I The optimal solution

p∗ = (I−DG)−1Dn



Perron-Frobenius Theorem

I The necessary and sufficient conditions for p to be positive

(I−DG︸︷︷︸
A

)−1 ≥ 0 iff ρ(A) = |λmax(A)| < 1.



Conic Programming

I Convex optimization tools are widely used in communication /
signal processing algorithms.

I Formulation of the non-convex problems to convex problems.

I Efficient use of convex optimization tools as CVX and
SeDuMi.

I Consider the SINR constraint

pk|hH
kuk|2 − γk

K∑
j=1,j 6=k

pj |hH
kuj |2 ≥ γk

(
σ2
zk

)
. (6)

I The constraint is a quadratic optimization problem with
quadratic non-convex constraints.



Beamforming Problem as SDP
Consider a power minimization problem

SP1(MISO) =



minimize
U

K∑
k=1

‖uk‖2 ,

subject to
|hH
kuk|2

K∑
j=1,j 6=k

|hH
kuj |2 + σ2

zk

≥ γk, 1 ≤ k ≤ K.
(7)

Let us define Ak = uku
H
k and Rk = hkh

H
k . The optimization

problem now can be transformed as

SP1-SDP(MISO) =



minimize
{Ak}Kk=1

K∑
k=1

Trace(Ak),

subject to Trace(RkAk)− γk
K∑
j 6=k

Trace(RkAj) ≥ γkσ2
zk

Ak � 0, rank(Ak) = 1, 1 ≤ k ≤ K.
(8)



Beamforming Problem as SOCP

I An arbitrary phase rotation does not affect the SINR of the
user.

I Considering only the real part of the gain matrix, the SINR
constraint can be re-written as(

1 +
1

γk

)
|hH
kuk|2 ≥

∥∥∥∥ hH
iU
σ2
zk

∥∥∥∥2

, 1 ≤ k ≤ K. (9)

I And, the optimization problem thus becomes

SP1-SOCP(MISO) =



minimize τ

subject to

√(
1 +

1

γk

)
hH
kuk ≥

∥∥∥∥ hH
iU
σ2
zk

∥∥∥∥
K∑
k=1

‖uk‖ ≤ τ, 1 ≤ k ≤ K,

(10)



UL-DL duality via Lagrangian Duality

I The Lagrangian of the SINR constraint can be written as

L(uk, λk) =

K∑
k=1

λkσ
2
zk +

K∑
k=1

uH
k

(
I +

K∑
j=1
j 6=k

λjhjh
H
j −

λk
γk

hkh
H
k

)
uk (11)

I The dual objective is

g(λk) = min
uk

L (uk, λk) (12)

I The Lagrangian dual problem is

maximize
K∑
k=1

λkσ
2
zk

subject to
K∑
j=1

λjhjh
H
j + I �

(
1 +

1

γk

)
λkhkh

H
k

(13)



UL-DL duality via Lagrangian Duality

I The sum power minimization problem for uplink

minimize
K∑
k=1

ρk

subject to
K∑
j=1

ρjhjh
H
j + σ2

zkI �
(

1 +
1

γk

)
ρkhkh

H
k

(14)

I For ρk = λkσ
2
zk

, Eq (13) and Eq (14) are identical.

I Eq (13) and Eq (14) gives the same solution.

I The dual variables of the downlink problem have the
interpretation of being the uplink power scaled by the noise
variance.



Duality Theory for UL-DL Beamforming

Rx

Rx

Rx

H1

H2

HK

x1

x2

xM

y1

y2

yK

Tx

s1

s2

sK

s1

s2

sK

I The downlink SINR is given as

Φ̂DL
k =

pk|ĥH
kuk|2

K∑
j=1,j 6=k

pj |ĥH
kuj |2 + σ2zi

. (15)



Duality Theory for UL-DL Beamforming
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Tx

I The uplink SINR is given as

Φ̂UL
k =

qk|ĥH
kuk|2

uHk

 K∑
j=1,j 6=k

qjĥjĥ
H
j + σ2

zkI

uk

. (16)

Uplink SINRs are only coupled by transmission powers,
however, the downlink SINRs are additionally coupled by
beamforming vectors, making direct optimization difficult.
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Duality-Downlink Power Assignment

I For a fixed beamformers, power optimization reduces to

SDL(Ũ, Pmax) =


maximize

p
min

1≤k≤K

SINR
(DL)
k

γk

subject to
∑
k

pk = Pmax

(17)

I SDL(U, Pmax) is strictly monotonically increasing in Pmax.
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maximize

p
min

1≤k≤K

SINR
(DL)
k

γk

subject to
∑
k

pk = Pmax

(17)

I SDL(U, Pmax) is strictly monotonically increasing in Pmax.



Duality-Downlink Power Assignment

I If p̃ is a global maximizer of the optimization problem, then

SDL(Ũ, Pmax) =
SINR

(DL)
k (Ũ, p̃)

γk

Pmax = ‖p̃‖1

(18)

I Further we can elaborate Eq (18) as

p̃
1

SDL(Ũ, Pmax)
= DG(Ũ)p̃ + Dn (19a)

1

SDL(Ũ, Pmax)
=

1

Pmax
1TDG(Ũ)p̃ +

1

Pmax
1TDn (19b)

I We can form eigen-system as[
DG(Ũ) Dn

1
Pmax

1TDG(Ũ) 1
Pmax

1TDn

]
︸ ︷︷ ︸

Υ(Ũ,Pmax)

[
p̃
1

]
=

1

SDL(Ũ, Pmax)

[
p̃
1

]
(20)



Duality-Downlink Power Assignment

I The solution for SINR balancing problem (17) is now given as

SDL(Ũ, Pmax) =
1

λmax

(
Υ(Ũ, Pmax)

) (21)

I Similarly for uplink, and q̃ext =

(
q̃
1

)
[

DGT(Ũ) Dn
1

Pmax
1TDGT(Ũ) 1

Pmax
1TDn

]
︸ ︷︷ ︸

Λ(Ũ,Pmax)

q̃ext = λmax

(
Λ(Ũ, Pmax)

)
q̃ext (22)



Duality-SINR Balancing

I For a given qext, the cost function λ(U,qext) is minimized by
independent maximization of the uplink SINRs.

I The optimal uk could be now calculated as

ûk = arg max
uk

uH
k

Hk︷ ︸︸ ︷
hkh

H
k uk

uHk

 K∑
j=1,j 6=k

qjĥjĥ
H
j + σ2

zkI


︸ ︷︷ ︸

Wk

uk

. (23)

I Eq. (23) is maximizing Rayleigh quotient problem.

I Eq. (23) is solved via dominant generalized eigen-vectors of
matrix pairs (Hk,Wk).



Power Minimization Algorithm



WHAT IF CHANNEL IS NOT PERFECT?



System Model
I MISO channel setting with Nt transmit antennas and K users

with single antenna.
I Consider the transmit beamforming vector uk.
I Transmit signal from BS

x =

K∑
k=1

uksk, (24)

I Received signal at user k

yk = hH
k

 K∑
j=1

sjuj

+ zk, (25)

I The instantaneous SINR for user k

SINRk(Φk) =
|hH
kuk|2∑

j 6=k
|hH
kuj |2 + σ2zk

. (26)



Channel Error

I Common assumption:

BS has perfect knowledge of channel

I Reality:
No perfect CSIT available and constitute error within.

I Causes:
Estimation errors and feedback delays.

I Effects:
BSs cannot predict exactly the required SINR at the users.

I What can be done?
Estimate SINR under imperfect CSIT
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Channel Error

I We model the imperfect CSIT as

hk = ĥk + ehk , (27)

ĥk is the estimated channel, ehk is the respective channel
error.

I The SINR with channel error incorporated will be

Φk(error)
=

|(ĥk + ehk)Huk|2∑
j 6=k
|(ĥk + ehk)Huj |2 + σ2zk

. (28)

I The problem again? We still do not know the errors.
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SINR Estimate under imperfect CSIT

I The estimated received signal

ŷk = ĥH
kuksk + ehkuksk +

K∑
j=1,j 6=k

ĥH
kujsj +

K∑
j=1,j 6=k

eH
hk
sjuj + zk,

= ĥH
kuksk︸ ︷︷ ︸

estimated transmit signal

+

estimated interference︷ ︸︸ ︷
K∑

j=1,j 6=k

ĥH
kujsj +

K∑
k=1,

eH
hk
skuk︸ ︷︷ ︸

unknown interference

+zk.

I The biased estimated of SINR will be now

Φ̂k(biased) =
|ĥH
kuk|2

K∑
j=1,j 6=k

|ĥH
kuj |2 + σ2

ehk
Trace(UUH) + σ2

zk

(30)
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Robustness of Estimate
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Comparison against unbiased

I The unbiased estimation of SINR

Φ̂k(unbiased) =
|(ĥk)Huk|2∑

j 6=k

|(ĥk)Huj |2 + σ2
zk

. (31)

I Consider estimation errors of unbiased and biased estimations.

∆Φ̂k(unbiased) , Φ̂k(unbiased) − Φk,

∆Φ̂k(biased) , Φ̂k(biased) − Φk,

I The deviation of error holds following equality

σ∆Φ̂k(biased)
=

σehk

√
2

(
(1 + σ2

ehk
) +

(σ2
zk
−Trace(ukuH

k))

Trace(UUH)

)σ∆Φ̂k(unbiased)
.

(33)



Comparison against unbiased
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Back to Power Minimization Problem

I The SINR constraint in presence of channel error is

pkGkk ≥ γk

 K∑
j=1,j 6=k

pjGkj +
∑
k

pkσ
2
ehk

+ σ2
zk

 . (34)

where Gkj = |ĥHk uj |2.

I We now define for ak = σ2ehk

D =



γ1
G11

0 · · · 0

0
γ2
G22

· · · 0

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · γK
GKK

 , GI =


a1 (G12 + a2) · · · G1K + aK

(G21 + a1) a2 · · · G2K + aK
.
.
.

.

.

.
. . .

.

.

.
(GK1 + a1) (GK2 + a2) · · · aK

 .
(35)

I In matrix form, the SINR constraint can be written as

(I−DGI)p ≥ Dn, (36)



Power Minimization Problem

I The optimal uk can be calculated as ’maximizing Rayleigh
quotient’ problem

ûk = arg max
uk

uHk ĥkĥ
H
k︸ ︷︷ ︸

Hk

uk

uH
k

 K∑
j=1,j 6=k

qjĥjĥ
H
j + σ2

zkI +
∑
k

qkσ
2
ehk

I


︸ ︷︷ ︸

Wk

uk

.
(37)

I The optimal u’s are given by the dominant generalized
eigenvectors of matrix pairs (Hk,Wk).



Results: Convergence of Algorithm
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Results: Comparison of different errors
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Power requirement under different channel error

T
ra
n
sm

is
si
on

P
ow

er
[d
B
]

Target SINR [dB]

Perfect Channel
σ2
e = 0.001

σ2
e = 0.01

σ2
e = 0.05

σ2
e = 0.1



Future Works

I The stochastic SINR (for high SNR) for channel error is given
as

Φ̂k(biased) =
|ĥH
kuk|2

K∑
j=1,j 6=k

|ĥH
kuj |2 + eH

hkUUHehk︸ ︷︷ ︸
X1

+σ2
zk

(38)

I X1 is gamma distributed Γ(x1; a, b) with shape parameter
a ≥ 0, and scale parameter b ≥ 0.

I The density function is given as

pX1(x1; a, b) =
1

baΓ(a)
xa−1

1 e

(−x1
b

)
. (39)

I The parameters a and b is given as

a =
(Tr[UUH])2

Tr[(UUH)2]
(40a)

b =
σ2
ehk

Tr[(UUH)2]

Tr[UUH]
(40b)



Future Works-Estimating Distribution

I Based on distribution of X1, the estimated SINR is distributed
as

pΦ̂k
(φ̂, a, b) =

c

φ̂2

(
c

φ̂
− δ
)a−1

exp

(
c
φ̂
−δ
b

)
baΓ(a)

, (41)

where the constants c and δ are given as

c = |ĥH
kuk|2, (42a)

δ =

K∑
j=1,j 6=k

|ĥH
kuj |2 + σ2

zk , (42b)

I As an example, the probabilistic constrained power
minimization problem can be written as

SProb(MISO) =


minimize

p

K∑
k=1

‖uk‖2

subject to Prob{SINRk ≥ γk} ≥ 1− ρk 1 ≤ k ≤ K,
(43)



Estimating Distribution of SINR
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Future Works

I The channel error case could be now extended to probabilistic
approach.

I Consider different channel errors: uncertainty region bounded
/ not bounded.

I Extend the ‘Power Minimization’, ‘Max-min SINR’, ‘Sum-Rate
Maximization’ problem to MIMO multi-cell cases.

I Implement ‘Centralized’ and ‘Decentralized’ processing
schemes.

I Compare all three problems under same umbrella.



Thank You

Questions?

Suggestions!


