

Outage-free Transmit Power Minimization with Imperfect CSIT

The 2014 Sino-Germany Workshop "Bridging Theory and Practice in Wireless Communications and Networking"

Giuseppe Abreu

g.abreu@jacobs-university.de

School of Engineering and Sciences Jacobs University Bremen

March 4, 2014

KORKA SERKER ORA

Evolution of Cellular Technology

Bridging Theory and Practice in Cellular Systems

 299

Evolution of Cellular Technology

Bridging Theory and Practice in Cellular Systems

Trend: $1000 \times$ traffic in 10 years!

KORKA SERKER ORA

Bridging Theory and Practice in Cellular Systems

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright Bridges of old

Bridging Theory and Practice in Cellular Systems

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright Bridges of old
	- \triangleright 2G Spectrum

Bridging Theory and Practice in Cellular Systems

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

\blacktriangleright Bridges of old

 $▶ 2G - Spectrum \leftarrow "Digital" (GSM/CDMA)$

Bridging Theory and Practice in Cellular Systems

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

\blacktriangleright Bridges of old

- $▶ 2G Spectrum \leftarrow "Digital" (GSM/CDMA)$
- \triangleright 3G More spectrum

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- $▶ 2G Spectrum ← "Digital" (GSM/CDMA)$
- ▶ 3G More spectrum \leftarrow Spread-spectrum (WCDMA)...

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- $▶ 2G Spectrum ← "Digital" (GSM/CDMA)$
- $▶ 3G More spectrum \leftarrow Spread-spectrum (WCDMA)...$

KORKA SERKER ORA

 \triangleright 4G - Some more...

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- ▶ 3G More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORKA SERKER ORA

 $▶ 4G - Some more... ← LTE (OFDMA)$

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- $▶ 2G Spectrum ← "Digital" (GSM/CDMA)$
- ▶ 3G More spectrum \leftarrow Spread-spectrum (WCDMA)...

- \triangleright 4G Some more... ← LTE (OFDMA)
- \blacktriangleright Bridges of late ($>$ 5G)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- ▶ 3G More spectrum \leftarrow Spread-spectrum (WCDMA)...

- \triangleright 4G Some more... ← LTE (OFDMA)
- \blacktriangleright Bridges of late ($> 5G$)
	- \triangleright Cooperation (Relaying)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

- \triangleright 4G Some more... ← LTE (OFDMA)
- \blacktriangleright Bridges of late ($>$ 5G)
	- ▶ Cooperation (Relaying) \rightarrow security (?)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- $▶ 2G Spectrum ← "Digital" (GSM/CDMA)$
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 $▶ 4G - Some more... ← LTE (OFDMA)$

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \blacktriangleright Het-Nets/Cognitive Radio

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 $▶ 4G - Some more... ← LTE (OFDMA)$

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \blacktriangleright Het-Nets/Cognitive Radio \rightarrow enough (?)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \blacktriangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- \blacktriangleright Interference Alignment

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

- ▶ Cooperation (Relaying) \rightarrow security (?)
- \triangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 $▶ 4G - Some more... ← LTE (OFDMA)$

- ▶ Cooperation (Relaying) \rightarrow security (?)
- \triangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- \blacktriangleright Full Duplex

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

- ▶ Cooperation (Relaying) \rightarrow security (?)
- \triangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- Full Duplex \rightarrow maturity (?)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

- ▶ Cooperation (Relaying) \rightarrow security (?)
- \blacktriangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- Full Duplex \rightarrow maturity (?)
- \blacktriangleright Massive MIMO

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \blacktriangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- Full Duplex \rightarrow maturity (?)
- \triangleright Massive MIMO \rightarrow expensive (!)

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

\blacktriangleright Bridges of late ($> 5G$)

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \triangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- Full Duplex \rightarrow maturity (?)
- \triangleright Massive MIMO \rightarrow expensive (!)

Bridge of now $(4G < ?? < 5G)$

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 \triangleright 4G - Some more... ← LTE (OFDMA)

\blacktriangleright Bridges of late ($> 5G$)

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \triangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- Full Duplex \rightarrow maturity (?)
- \triangleright Massive MIMO \rightarrow expensive (!)

Bridge of now $(4G < ?? < 5G)$

 \triangleright CoMP

Bridging Theory and Practice in Cellular Systems

\blacktriangleright Bridges of old

- \triangleright 2G Spectrum ← "Digital" (GSM/CDMA)
- $▶ 3G$ More spectrum \leftarrow Spread-spectrum (WCDMA)...

KORK ERKER ADE YOUR

 $▶ 4G - Some more... ← LTE (OFDMA)$

\blacktriangleright Bridges of late ($> 5G$)

- \triangleright Cooperation (Relaying) \rightarrow security (?)
- \triangleright Het-Nets/Cognitive Radio \rightarrow enough (?)
- Interference Alignment \rightarrow scalability (?)
- Full Duplex \rightarrow maturity (?)
- \triangleright Massive MIMO \rightarrow expensive (!)

Bridge of now $(4G < ?? < 5G)$

 \triangleright CoMP \rightarrow evolutionary, flexible, mature...

Coordinated Multipoint - CoMP

- \triangleright Base stations coordinate with each other.
- \blacktriangleright No receiver cooperation.
- \blacktriangleright Multiple antennas in transmit and receive side.
- \triangleright BSs connected via backhaul and CoMP can be perfromed:
	- \blacktriangleright Joint Processing
	- \triangleright Coordinated Beamforming
- \blacktriangleright Network Architecture
	- \blacktriangleright Centralized Approach
	- \triangleright Decentralized Approach

Issues with CoMP

- \blacktriangleright The need of tight synchronization between base stations.
- \triangleright Signaling overhead on the air interface for the cooperation/coordination of BSs.
- \triangleright Backhaul speed and latency for the information exchange between BSs
- \blacktriangleright Limitation in the number of cooperating base stations: Clustering.
- \triangleright Sensitivity of the channel information feedback from user terminal to the BSs.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Approaching the problem

- \triangleright We consider a multicell multiuser MIMO systems with coordinating BSs.
- \triangleright Broader network with conventional size and complexity power.
- \triangleright Sufficient resources to estimate the channel.
- \triangleright Consider three different problems
	- ▶ Power Minimization Problem Energy Efficiency
	- \triangleright Max-min SINR Problem Quality of Service
	- \triangleright Sum Rate Maximization Problem Spectral Efficiency

$$
S_{\mathsf{P1(MISO)}} = \begin{cases} \text{minimize} & \sum_{k=1}^{K} p_k, \\ \text{subject to} & \text{SINR}_k^{\mathsf{DL}} \ge \gamma_k, \quad 1 \le k \le K. \end{cases} \tag{1}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Max-Min SINR Problem

Quality of Service

$$
S_{P2(MISO)} = \begin{cases} \text{maximize} & \min_{1 \le k \le K} \frac{\text{SINR}_k^{\text{DL}}}{\gamma_k} \\ \text{subject to} & \sum_k p_k \le P_{max} \\ & \| \mathbf{u}_k \| = 1, \qquad 1 \le k \le K, \end{cases} \tag{2}
$$

イロト イ御 トイミト イミト ニミー りんぴ

Sum-Rate Maximization Problem Spectral Efficiency

$$
S_{\text{P3-MSE(MISO)}} = \begin{cases} \text{minimize} & \sum_{k=1}^{K} w_k \frac{1}{1 + \text{SINR}^{\text{DL}}} \\ \text{subject to} & \sum_{k} p_k \le P_{max} \quad 1 \le k \le K. \end{cases} \tag{3}
$$

イロト イ御 トイミト イミト ニミー りんぴ

MOTIVATION

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

Example 1: Power minimization problem $Yu\&Lan 2007$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Example 1: Power minimization problem [Yu&Lan 2007]

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Example 1: Power minimization problem $Yu\&Lan 2007$

Example 1: Power minimization problem $Yu\&Lan 2007$

Example 1: Power minimization problem $Yu\&Lan 2007$

Energy Efficiency

Example 2: Power minimization problem $[Song et al. 2007]$

minimize p>0,V,U \sum K $k=1$ w_k p_k subject to $SINR_k \geq \gamma_k$ given \mathbf{H}_{kj} and w_k $\mathsf{TX}: \ \mathbf{x}_{N\times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{RX}: \; y_k = \mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{x} + z_k$ $k=1$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$

KORK ERKER ADE YOUR

Power Minimization Problem Energy Efficiency Example 2: Power minimization problem $[Song et al. 2007]$ minimize p>0,V,U \sum K $k=1$ w_k p_k

given \mathbf{H}_{kj} and w_k $\mathsf{TX}: \ \mathbf{x}_{N\times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{RX}: \; y_k = \mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{x} + z_k$ $k=1$

KORK ERKER ADE YOUR

subject to $SINR_k \geq \gamma_k$

$$
\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{j \neq k} p_j |\mathbf{v}_k^H \cdot \mathbf{H}_{kj} \cdot \mathbf{u}_k|^2 + \sigma^2}
$$

 \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO

Energy Efficiency

Example 2: Power minimization problem \lceil Song et al. 2007 \rceil

minimize p>0,V,U \sum K $k=1$ w_k p_k subject to $SINR_k \geq \gamma_k$ given \mathbf{H}_{kj} and w_k $\mathsf{TX}: \ \mathbf{x}_{N\times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{RX}: \; y_k = \mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{x} + z_k$ $k=1$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$

 \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO

► Fixed p_n per-antenna target powers \rightarrow optimized per user p_k

KORK ERKER ADE YOUR

Known weight per user $w_k \rightarrow$ how (?)

Energy Efficiency

Example 2: Power minimization problem \lceil Song et al. 2007 \rceil

minimize p>0,V,U \sum K $k=1$ w_k p_k subject to $SINR_k \geq \gamma_k$ given \mathbf{H}_{kj} and w_k $\mathsf{TX}: \ \mathbf{x}_{N\times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{RX}: \; y_k = \mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{x} + z_k$ $k=1$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$

 \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO

Fixed p_n per-antenna target powers \rightarrow optimized per user p_k

KORK ERKER ADE YOUR

- **Known** weight per user $w_k \rightarrow$ how (?)
- **Per user** γ_k target SINRs \rightarrow QoS balancing (?)

Energy Efficiency

Example 2: Power minimization problem $[Song et al. 2007]$

minimize p>0,V,U \sum K $k=1$ w_k p_k subject to $SINR_k \geq \gamma_k$ given \mathbf{H}_{kj} and w_k $\mathsf{TX}: \ \mathbf{x}_{N\times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{RX}: \; y_k = \mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{x} + z_k$ $k=1$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$

 \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO

- **► Fixed** p_n per-antenna target powers \rightarrow optimized per user p_k
- **Known** weight per user $w_k \rightarrow$ how (?)
- **Per user** γ_k target SINRs \rightarrow QoS balancing (?)
- **P[e](#page-35-0)rfectly known** H_{kj} for [a](#page-36-0)ll users \rightarrow [ove](#page-39-0)[rh](#page-41-0)ea[d](#page-40-0) $(!)_{\geq 1}$ $(!)_{\geq 1}$ $(!)_{\geq 1}$ and ≥ 0

Quality of Service

Example 3: Min-max SINR problem $[Huang et al. 2011]$

 $\mathsf{maximize} \quad \min_{k} \quad \mathsf{SINR}_k$ $\mathbf{p} > 0, \mathbb{U}$ $\forall k$ subject to $\|\mathbf{p}\| < P$ $\|\mathbf{u}_k\| = 1$ given \mathbf{h}_k $\mathsf{T}\mathsf{X}: \ \mathbf{x}_{N\times 1} = \sum_{k=1}^{N} \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{R}\mathsf{X}: \ y_k = \mathbf{h}_k \cdot \mathbf{x} + z_k$ $k=1$ $SINR_k = \frac{p_k |\mathbf{h}_k \cdot \mathbf{u}_k|^2}{\sum_{k=1}^{\infty} |\mathbf{h}_k \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|\mathbf{h}_j\cdot\mathbf{u}_k|^2+\sigma^2$

KORK ERKER ADE YOUR

Quality of Service

Example 3: Min-max SINR problem $[Huang et al. 2011]$

 $\mathsf{maximize} \quad \min_{k} \quad \mathsf{SINR}_k$ $\mathbf{p} > 0, \mathbb{U}$ $\forall k$ subject to $\|\mathbf{p}\| < P$ $\|\mathbf{u}_k\| = 1$ given \mathbf{h}_k $\mathsf{T}\mathsf{X}: \ \mathbf{x}_{N\times 1} = \sum_{k=1}^{N} \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{R}\mathsf{X}: \ y_k = \mathbf{h}_k \cdot \mathbf{x} + z_k$ $k=1$ $SINR_k = \frac{p_k |\mathbf{h}_k \cdot \mathbf{u}_k|^2}{\sum_{k=1}^{\infty} |\mathbf{h}_k \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|\mathbf{h}_j\cdot\mathbf{u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ \textsf{TX} antennas \rightarrow MISO

KORKAR KERKER EL VOLO

Quality of Service

Example 3: Min-max SINR problem $[Huang et al. 2011]$

 $\mathsf{maximize} \quad \min_{k} \quad \mathsf{SINR}_k$ $\mathbf{p} > 0, \mathbb{U}$ $\forall k$ subject to $\|\mathbf{p}\| < P$ $\|\mathbf{u}_k\| = 1$ given \mathbf{h}_k $\mathsf{T}\mathsf{X}: \ \mathbf{x}_{N\times 1} = \sum_{k=1}^{N} \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{R}\mathsf{X}: \ y_k = \mathbf{h}_k \cdot \mathbf{x} + z_k$ $k=1$ $SINR_k = \frac{p_k |\mathbf{h}_k \cdot \mathbf{u}_k|^2}{\sum_{k=1}^{\infty} |\mathbf{h}_k \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|\mathbf{h}_j\cdot\mathbf{u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ \textsf{TX} antennas \rightarrow MISO Fixed p_n per-antenna target powers \rightarrow optimized per user p_k

Quality of Service

Example 3: Min-max SINR problem $[Huang et al. 2011]$

 $\mathsf{maximize} \quad \min_{k} \quad \mathsf{SINR}_k$ $\mathbf{p} > 0, \mathbb{U}$ $\forall k$ subject to $\|\mathbf{p}\| < P$ $\|\mathbf{u}_k\| = 1$ given \mathbf{h}_k $\mathsf{T}\mathsf{X}: \ \mathbf{x}_{N\times 1} = \sum_{k=1}^{N} \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{R}\mathsf{X}: \ y_k = \mathbf{h}_k \cdot \mathbf{x} + z_k$ $k=1$ $SINR_k = \frac{p_k |\mathbf{h}_k \cdot \mathbf{u}_k|^2}{\sum_{k=1}^{\infty} |\mathbf{h}_k \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|\mathbf{h}_j\cdot\mathbf{u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ \textsf{TX} antennas \rightarrow MISO ► Fixed p_n per-antenna target powers \rightarrow optimized per user p_k **Per user** γ_k target SINRs \rightarrow minimum QoS

KORK ERKER ADE YOUR

Quality of Service

Example 3: Min-max SINR problem $[Huang et al. 2011]$

 $\mathsf{maximize} \quad \min_{k} \quad \mathsf{SINR}_k$ $\mathbf{p} > 0, \mathbb{U}$ $\forall k$ subject to $\|\mathbf{p}\| < P$ $\|\mathbf{u}_k\| = 1$ given \mathbf{h}_k $\mathsf{T}\mathsf{X}: \ \mathbf{x}_{N\times 1} = \sum_{k=1}^{N} \sqrt{p_k} \, s_k \mathbf{u}_k \qquad \mathsf{R}\mathsf{X}: \ y_k = \mathbf{h}_k \cdot \mathbf{x} + z_k$ $k=1$ $SINR_k = \frac{p_k |\mathbf{h}_k \cdot \mathbf{u}_k|^2}{\sum_{k=1}^{\infty} |\mathbf{h}_k \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|\mathbf{h}_j\cdot\mathbf{u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ \textsf{TX} antennas \rightarrow MISO ► Fixed p_n per-antenna target powers \rightarrow optimized per user p_k **Per user** γ_k target SINRs \rightarrow minimum QoS ^I Perfectly known h^k for all → overhe[ad](#page-44-0) [\(!](#page-46-0)[\)](#page-40-0)

Quality of Service

Example 4: Min-max SINR problem $[Cai]$ et al. 2011]

maximize $\min_{\mathbf{p}>0,\mathbb{U},\mathbb{V}}$ $\qquad \forall k$ SIN R_k α_k subject to $\mathbf{w}_{\ell} \cdot \mathbf{p} \leq P_{\ell}, \ \ell \in \mathcal{L} \Big| |\mathcal{L}| < K$ given $\mathbf{H}_{k,i}$, \mathbf{w}_k and α $\mathsf{TX}: \ \mathbf{x}_{N \times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k {\bf u}_k \qquad \mathsf{RX}: \; y_k = {\bf v}_k^H \cdot {\bf H}_{kk} \cdot {\bf x} + z_k$ $_{k=1}$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Quality of Service

Example 4: Min-max SINR problem $[Cai]$ et al. 2011]

maximize $\min_{\mathbf{p}>0,\mathbb{U},\mathbb{V}}$ $\qquad \forall k$ SIN R_k α_k subject to $\mathbf{w}_{\ell} \cdot \mathbf{p} \leq P_{\ell}, \ \ell \in \mathcal{L} \Big| |\mathcal{L}| < K$ given $\mathbf{H}_{k,i}$, \mathbf{w}_k and α $\mathsf{TX}: \ \mathbf{x}_{N \times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k {\bf u}_k \qquad \mathsf{RX}: \; y_k = {\bf v}_k^H \cdot {\bf H}_{kk} \cdot {\bf x} + z_k$ $_{k=1}$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO

KORK ERKER ADE YOUR

Quality of Service

Example 4: Min-max SINR problem $[Cai]$ et al. 2011]

maximize $\min_{\mathbf{p}>0,\mathbb{U},\mathbb{V}}$ $\qquad \forall k$ SIN R_k α_k subject to $\mathbf{w}_{\ell} \cdot \mathbf{p} \leq P_{\ell}, \ \ell \in \mathcal{L} \Big| |\mathcal{L}| < K$ given $\mathbf{H}_{k,i}$, \mathbf{w}_k and α $\mathsf{TX}: \ \mathbf{x}_{N \times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k {\bf u}_k \qquad \mathsf{RX}: \; y_k = {\bf v}_k^H \cdot {\bf H}_{kk} \cdot {\bf x} + z_k$ $_{k=1}$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO ► Fixed p_n per-antenna target powers \rightarrow optimized per user p_k **Known** weight vectors per user w_k and scores $\alpha_k \rightarrow how(?)$

Quality of Service

Example 4: Min-max SINR problem $[Cai]$ et al. 2011]

maximize $\min_{\mathbf{p}>0,\mathbb{U},\mathbb{V}}$ $\qquad \forall k$ SIN R_k α_k subject to $\mathbf{w}_{\ell} \cdot \mathbf{p} \leq P_{\ell}, \ \ell \in \mathcal{L} \Big| |\mathcal{L}| < K$ given $\mathbf{H}_{k,i}$, \mathbf{w}_k and α $\mathsf{TX}: \ \mathbf{x}_{N \times 1} = \sum$ $\sum_{k=1}^K \sqrt{p_k} \, s_k {\bf u}_k \qquad \mathsf{RX}: \; y_k = {\bf v}_k^H \cdot {\bf H}_{kk} \cdot {\bf x} + z_k$ $_{k=1}$ $\textsf{SINR}_k = \frac{p_k |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}{\sum_{k=1}^K |\mathbf{v}_k^H \cdot \mathbf{H}_{kk} \cdot \mathbf{u}_k|^2}$ $\sum_{j\neq k}p_j|{\bf v}_k^H\cdot{\bf H}_{kj}\cdot{\bf u}_k|^2+\sigma^2$ \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ TX antennas \rightarrow MIMO ► Fixed p_n per-antenna target powers \rightarrow optimized per user p_k **Known** weight vectors per user w_k and scores $\alpha_k \to \text{how (?)}$ **P[er](#page-50-0)f[e](#page-46-0)ctly known** H_{kj} for [a](#page-49-0)ll users \rightarrow \rightarrow \rightarrow [ov](#page-48-0)erhea[d](#page-50-0) [\(!\)](#page-0-0)

Example 5: Sum-rate maximization problem $[Trans]$ et al. 2012]

 $\alpha_k \log_2(1 + \mathsf{SINR}_k) \longrightarrow (1 + \mathsf{SINR}_k)^{\alpha_k} \longrightarrow t_k$

KORK ERKER ADE YOUR

Example 5: Sum-rate maximization problem $[Trans]$ and $1. 2012]$

$$
\begin{array}{ll}\n\text{maximize} & \prod_{\mathbf{t}, \mathbb{U}}^{K} t_k \\
\text{subject to} & \text{SINR}_k \ge t_k^{1/\alpha_k} - 1 \\
& \sum_{k=1}^{K} \|\mathbf{u}_k\|^2 \le P \\
& \text{given} & \mathbf{h}_k, P \text{ and } \alpha \\
& \alpha_k \log_2(1 + \text{SINR}_k) \longrightarrow (1 + \text{SINR}_k)^{\alpha_k} \longrightarrow t_k \\
& \blacktriangleright N = \sum_{b=1}^{B} N_{t_b} \text{ TX antennas} \rightarrow \text{MISO}\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Example 5: Sum-rate maximization problem $[Trans]$ and $1. 2012]$

$$
\begin{array}{ll}\n\text{maximize} & \prod_{t,\mathbb{U}}^{K} t_k\\ \n\text{subject to} & \text{SINR}_k \ge t_k^{1/\alpha_k} - 1\\ \n& \sum_{k=1}^{K} \|\mathbf{u}_k\|^2 \le P\\ \n\text{given} & \mathbf{h}_k, P \text{ and } \alpha\\ \n& \alpha_k \log_2(1 + \text{SINR}_k) \longrightarrow (1 + \text{SINR}_k)^{\alpha_k} \longrightarrow t_k\\ \n\blacktriangleright N = \sum_{b=1}^{B} N_{t_b} \text{ TX antennas} \rightarrow \text{MISO}\\ \n\text{Fixed } p_n \text{ per-antenna target powers} \rightarrow \text{ optimized total } p_k\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Known scores $\alpha_k \to \text{how (?)}$

Example 5: Sum-rate maximization problem $\boxed{\text{Tran et al. 2012}}$

$$
\begin{aligned}\n\text{maximize} & \quad \prod_{k=1}^{K} t_k \\
\text{subject to} & \quad \text{SINR}_k \ge t_k^{1/\alpha_k} - 1 \\
& \quad \sum_{k=1}^{K} \|\mathbf{u}_k\|^2 \le P \\
\text{given} & \quad \mathbf{h}_k, P \text{ and } \alpha \\
\alpha_k \log_2(1 + \text{SINR}_k) & \longrightarrow (1 + \text{SINR}_k)^{\alpha_k} \longrightarrow t_k \\
& \quad = \sum_{k=1}^{B} N_k, \text{TX antennas} \rightarrow \text{MISO}\n\end{aligned}
$$

 \blacktriangleright $N = \sum_{b=1}^B N_{t_b}$ \textsf{TX} antennas \rightarrow MISO ► Fixed p_n per-antenna target powers \rightarrow optimized total p_k

- **Known** scores $\alpha_k \to \text{how (?)}$
- ^I Perfectly known h^k for all users → [ove](#page-52-0)r[he](#page-54-0)[a](#page-49-0)[d](#page-50-0)[\(!](#page-54-0)[\)](#page-0-0)

Example 6: Sum-rate maximization problem $[Park et al. 2013]$

$$
\begin{aligned}\n\text{maximize} & \sum_{\mathbf{W} \in \{\mathbf{V}_k\}}^K w_k \log_2 |\mathbf{I}_{N_r} + (\sigma_k^2 \mathbf{I} + \mathbf{\Phi}_k)^{-1} \mathbf{H}_{kk} \mathbf{V}_k \mathbf{V}_k \mathbf{H}_{kk}^H| \\
\text{subject to} & \quad ||\mathbf{H}_{jk} \mathbf{V}_k||^2 \le \alpha_{jk} \sigma_j^2 \\
& \quad ||\mathbf{V}_k||^2 \le p_k \\
\text{given} & \mathbf{H}_{jk}, \mathbf{w}, \mathbf{p} \text{ and } \alpha\n\end{aligned}
$$

$$
\mathbf{\Phi}_k = \sum_{k=1} \mathbf{H}_{kj} \mathbf{V}_j \mathbf{V}_j^H \mathbf{H}_{kj}^H
$$

KO KKOK KEK KEK LE I KORO

Example 6: Sum-rate maximization problem $[Park et al. 2013]$

$$
\begin{aligned}\n\text{maximize} & \sum_{\mathbf{W} \triangleq \{\mathbf{V}_k\}}^K \sum_{k=1}^K w_k \log_2 |\mathbf{I}_{N_r} + (\sigma_k^2 \mathbf{I} + \mathbf{\Phi}_k)^{-1} \mathbf{H}_{kk} \mathbf{V}_k \mathbf{V}_k \mathbf{H}_{kk}^H| \\
\text{subject to} & \|\mathbf{H}_{jk} \mathbf{V}_k\|^2 \le \alpha_{jk} \sigma_j^2 \\
& \|\mathbf{V}_k\|^2 \le p_k \\
\text{given} & \mathbf{H}_{jk}, \mathbf{w}, \mathbf{p} \text{ and } \alpha \\
& \mathbf{\Phi}_k = \sum_{k=1}^K \mathbf{H}_{kj} \mathbf{V}_j \mathbf{V}_j^H \mathbf{H}_{kj}^H \\
& \star \mathbf{H} = \sum_{k=1}^B N_{ts} \mathbf{H}_{kj}^H \mathbf{W}_k\n\end{aligned}
$$

KO KKOK KEK KEK LE I KORO

Example 6: Sum-rate maximization problem $[Park et al. 2013]$

$$
\begin{array}{ll}\n\text{maximize} & \sum_{k=1}^{K} w_k \log_2 |\mathbf{I}_{N_r} + (\sigma_k^2 \mathbf{I} + \mathbf{\Phi}_k)^{-1} \mathbf{H}_{kk} \mathbf{V}_k \mathbf{V}_k \mathbf{H}_{kk}^H| \\
\text{subject to} & \|\mathbf{H}_{jk} \mathbf{V}_k\|^2 \leq \alpha_{jk} \sigma_j^2 \\
& \|\mathbf{V}_k\|^2 \leq p_k \\
\text{given} & \mathbf{H}_{jk}, \mathbf{w}, \mathbf{p} \text{ and } \alpha \\
& \Phi_k = \sum_{k=1}^{K} \mathbf{H}_{kj} \mathbf{V}_j \mathbf{V}_j^H \mathbf{H}_{kj}^H \\
& \quad \mathbf{F}_k = \sum_{b=1}^{B} N_{t_b} \text{ TX antennas} \rightarrow \text{MIMO} \\
& \quad \mathbf{Fixed} \ p_{\overline{n}} \text{ per-antenna target powers} \rightarrow \text{ optimized per user } p_k \\
& \quad \mathbf{Known} \text{ weights } \mathbf{w}, \text{ target powers } p_k \text{ and scores } \alpha_k \rightarrow \text{how (?)}\n\end{array}
$$

Example 6: Sum-rate maximization problem $[Park et al. 2013]$

$$
\begin{array}{ll}\n\text{maximize} & \sum_{k=1}^{K} w_k \log_2 |\mathbf{I}_{N_r} + (\sigma_k^2 \mathbf{I} + \mathbf{\Phi}_k)^{-1} \mathbf{H}_{kk} \mathbf{V}_k \mathbf{V}_k \mathbf{H}_{kk}^H| \\
\text{subject to} & \|\mathbf{H}_{jk} \mathbf{V}_k\|^2 \leq \alpha_{jk} \sigma_j^2 \\
& \|\mathbf{V}_k\|^2 \leq p_k \\
\text{given} & \mathbf{H}_{jk}, \mathbf{w}, \mathbf{p} \text{ and } \alpha \\
& \Phi_k = \sum_{k=1}^{K} \mathbf{H}_{kj} \mathbf{V}_j \mathbf{V}_j^H \mathbf{H}_{kj}^H \\
& \quad \ast \mathbf{A} = \sum_{b=1}^{B} N_{t_b} \text{ TX antennas} \rightarrow \text{MIMO} \\
& \quad \text{Fixed } p_n \text{ per-antenna target powers} \rightarrow \text{ optimized per user } p_k \\
& \quad \text{Known weights w, target powers } p_k \text{ and scores } \alpha_k \rightarrow \text{how (?)} \\
& \quad \text{Perfectly known } \mathbf{H}_{kj} \text{ for all users } \rightarrow \text{ overhead (!)}\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Comprehensive Review

SOME TOOLS

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

System Model

 \blacktriangleright The transmitted signal

Perron-Frobenius Theorem

- \triangleright Characterizes eigenvectors and eigenvalues of non-negative matrices.
- \triangleright Possible solution for power minimization in wireless network.
- \triangleright SINR Constraint

$$
\frac{p_k |\mathbf{h}_k^{\mathsf{H}} \mathbf{u}_k|^2}{\sum_{j=1, j\neq k}^K p_j |\mathbf{h}_k^{\mathsf{H}} \mathbf{u}_j|^2 + \sigma_{z_k}^2} \geq \gamma_k.
$$
 (4)

 \triangleright The SINR constraint can be re-written as

$$
p_k G_{kk} \ge \gamma_k \left(\sum_{j=1, j \neq k}^K p_j G_{kj} + \sigma_{z_k}^2 \right), \tag{5}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

where $G_{jk}=|\mathbf{h}_j\mathbf{u}_k|^2$.

Perron-Frobenius Theorem

 \triangleright We now define two matrices D and G

$$
\mathbf{D} = \begin{bmatrix} \frac{\gamma_1}{G_{11}} & 0 & \cdots & 0 \\ 0 & \frac{\gamma_2}{G_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\gamma_K}{G_{KK}} \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} 0 & G_{12} & \cdots & G_{1K} \\ G_{21} & 0 & \cdots & G_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ G_{K1} & G_{K2} & \cdots & 0 \end{bmatrix},
$$

 \triangleright The SINR constraint in the matrix form can be written as

 $(I - DG)p > Dn$,

where $\mathbf{p}=[p_1, p_2, \cdots, p_K]^\mathsf{T}$, and $\mathbf{n}=[\sigma_{z_1}^2, \sigma_{z_2}^2, \cdots, \sigma_{z_k}^2]^\mathsf{T}$.

 \blacktriangleright The optimal solution

$$
\mathbf{p}^* = (\mathbf{I} - \mathbf{D}\mathbf{G})^{-1}\mathbf{D}\mathbf{n}
$$

Perron-Frobenius Theorem

 \blacktriangleright The necessary and sufficient conditions for $\bf p$ to be positive

$$
(\mathbf{I} - \mathbf{D}\mathbf{G})^{-1} \ge 0 \quad \text{iff} \quad \rho(\mathbf{A}) = |\lambda_{max}(\mathbf{A})| < 1.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Conic Programming

- \triangleright Convex optimization tools are widely used in communication / signal processing algorithms.
- \triangleright Formulation of the non-convex problems to convex problems.
- \triangleright Efficient use of convex optimization tools as CVX and SeDuMi.
- \triangleright Consider the SINR constraint

$$
p_k |\mathbf{h}_k^H \mathbf{u}_k|^2 - \gamma_k \sum_{j=1, j \neq k}^K p_j |\mathbf{h}_k^H \mathbf{u}_j|^2 \geq \gamma_k \left(\sigma_{z_k}^2\right). \tag{6}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright The constraint is a quadratic optimization problem with quadratic non-convex constraints.

Beamforming Problem as SDP

Consider a power minimization problem

$$
\mathcal{S}_{\text{PI(MISO)}} = \begin{cases} \text{minimize} & \sum_{k=1}^{K} \|\mathbf{u}_k\|^2, \\ \text{subject to} & \frac{|\mathbf{h}_k^{\text{H}} \mathbf{u}_k|^2}{\sum_{j=1, j\neq k}^{K} |\mathbf{h}_k^{\text{H}} \mathbf{u}_j|^2 + \sigma_{z_k}^2} \geq \gamma_k, \quad 1 \leq k \leq K. \end{cases} \tag{7}
$$

Let us define $\mathbf{A}_k = \mathbf{u}_k \mathbf{u}_k^{\mathsf{H}}$ and $\mathbf{R}_k = \mathbf{h}_k \mathbf{h}_k^{\mathsf{H}}$. The optimization $\sum_{k=1}^{\infty} a_k \mathbf{a}_k = \mathbf{a}_k \mathbf{a}_k$ and \mathbf{a}_k

$$
S_{\text{P1-SDP(MISO)}} = \begin{cases} \n\minimize & \sum_{\{A_k\}_{k=1}^K \text{Trace}(\mathbf{A}_k), \\ \n\text{subject to} & \text{Trace}(\mathbf{R}_k \mathbf{A}_k) - \gamma_k \sum_{j \neq k}^K \text{Trace}(\mathbf{R}_k \mathbf{A}_j) \geq \gamma_k \sigma_{z_k}^2 \\ \n\text{subject to} & \text{Area}(\mathbf{A}_k) = 1, \quad 1 \leq k \leq K. \n\end{cases} \tag{8}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Beamforming Problem as SOCP

- \triangleright An arbitrary phase rotation does not affect the SINR of the user.
- \triangleright Considering only the real part of the gain matrix, the SINR constraint can be re-written as

$$
\left(1+\frac{1}{\gamma_k}\right)|\mathbf{h}_k^{\mathsf{H}}\mathbf{u}_k|^2 \ge \left\|\begin{array}{c}\mathbf{h}_i^{\mathsf{H}}\mathbf{U} \\ \sigma_{z_k}^2\end{array}\right\|^2, \quad 1 \le k \le K. \tag{9}
$$

KORKA SERKER ORA

 \triangleright And, the optimization problem thus becomes

$$
\mathcal{S}_{\text{P1-SOCP(MISO)}} = \left\{ \begin{array}{ll}\text{minimize} & \tau\\ \text{subject to} & \sqrt{\left(1 + \frac{1}{\gamma_k}\right)} \mathbf{h}_k^H \mathbf{u}_k \ge \left\| \begin{array}{c} \mathbf{h}_i^H \mathbf{U} \\ \sigma_{z_k}^2 \end{array} \right\| \quad (10)\\ & \sum_{k=1}^K \|\mathbf{u}_k\| \le \tau, \quad 1 \le k \le K,\end{array} \right.
$$

UL-DL duality via Lagrangian Duality

 \triangleright The Lagrangian of the SINR constraint can be written as

$$
L(\mathbf{u}_k, \lambda_k) = \sum_{k=1}^K \lambda_k \sigma_{z_k}^2 + \sum_{k=1}^K \mathbf{u}_k^H \Big(\mathbf{I} + \sum_{\substack{j=1 \ j \neq k}}^K \lambda_j \mathbf{h}_j \mathbf{h}_j^H - \frac{\lambda_k}{\gamma_k} \mathbf{h}_k \mathbf{h}_k^H \Big) \mathbf{u}_k \quad (11)
$$

 \blacktriangleright The dual objective is

$$
g(\lambda_k) = \min_{\mathbf{u}_k} L(\mathbf{u}_k, \lambda_k)
$$
 (12)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \blacktriangleright The Lagrangian dual problem is

$$
\begin{array}{ll}\n\text{maximize} & \sum_{k=1}^{K} \lambda_k \sigma_{z_k}^2 \\
\text{subject to} & \sum_{j=1}^{K} \lambda_j \mathbf{h}_j \mathbf{h}_j^H + \mathbf{I} \succeq \left(1 + \frac{1}{\gamma_k}\right) \lambda_k \mathbf{h}_k \mathbf{h}_k^H\n\end{array} \tag{13}
$$

UL-DL duality via Lagrangian Duality

 \triangleright The sum power minimization problem for uplink

minimize
$$
\sum_{k=1}^{K} \rho_k
$$

subject to
$$
\sum_{j=1}^{K} \rho_j \mathbf{h}_j \mathbf{h}_j^H + \sigma_{z_k}^2 \mathbf{I} \preceq \left(1 + \frac{1}{\gamma_k}\right) \rho_k \mathbf{h}_k \mathbf{h}_k^H
$$
 (14)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \blacktriangleright For $\rho_k = \lambda_k \sigma_{z_k}^2$, Eq [\(13\)](#page-66-0) and Eq [\(14\)](#page-68-0) are identical.

- \triangleright Eq [\(13\)](#page-66-0) and Eq [\(14\)](#page-68-0) gives the same solution.
- \blacktriangleright The dual variables of the downlink problem have the interpretation of being the uplink power scaled by the noise variance.

Duality Theory for UL-DL Beamforming

 \triangleright The downlink SINR is given as

$$
\hat{\Phi}_k^{\text{DL}} = \frac{p_k |\hat{\mathbf{h}}_k^{\text{H}} \mathbf{u}_k|^2}{\sum_{j=1, j \neq k} p_j |\hat{\mathbf{h}}_k^{\text{H}} \mathbf{u}_j|^2 + \sigma_{z_i}^2}.
$$
 (15)

K ロンス 御 > ス 할 > ス 할 > 이 할

 2990

Duality Theory for UL-DL Beamforming

 \blacktriangleright The uplink SINR is given as

$$
\hat{\Phi}_{k}^{\text{UL}} = \frac{q_{k}|\hat{\mathbf{h}}_{k}^{\text{H}}\mathbf{u}_{k}|^{2}}{\mathbf{u}_{k}^{H}\left(\sum_{j=1,j\neq k}^{K}q_{j}\hat{\mathbf{h}}_{j}\hat{\mathbf{h}}_{j}^{\text{H}} + \sigma_{z_{k}}^{2}\mathbf{I}\right)\mathbf{u}_{k}}.
$$
 (16)

K ロ X K 個 X K 결 X K 결 X (결)

 2990

Duality Theory for UL-DL Beamforming

 \blacktriangleright The uplink SINR is given as

$$
\hat{\Phi}_{k}^{\text{UL}} = \frac{q_{k}|\hat{\mathbf{h}}_{k}^{\text{H}}\mathbf{u}_{k}|^{2}}{\mathbf{u}_{k}^{H}\left(\sum_{j=1,j\neq k}^{K}q_{j}\hat{\mathbf{h}}_{j}\hat{\mathbf{h}}_{j}^{\text{H}} + \sigma_{z_{k}}^{2}\mathbf{I}\right)\mathbf{u}_{k}}.
$$
 (16)

 $\mathbf{A} \equiv \mathbf{A} + \math$

 2990

Uplink SINRs are only coupled by transmission powers, however, the downlink SINRs are additionally coupled by beamforming vectors, making direct optimization difficult.
\blacktriangleright For a fixed beamformers, power optimization reduces to

$$
S^{DL}(\tilde{\mathbf{U}}, P_{max}) = \begin{cases} \text{maximize} & \min_{1 \leq k \leq K} \frac{\text{SINR}_{k}^{(DL)}}{\gamma_{k}}\\ \text{subject to} & \sum_{k} p_{k} = P_{max} \end{cases}
$$
(17)

KID KA KERKER E VOOR

 $\blacktriangleright \; \mathcal{S}^{DL}(\mathbf{U}, P_{max})$ is strictly monotonically increasing in $P_{max}.$

 \blacktriangleright For a fixed beamformers, power optimization reduces to

$$
S^{DL}(\tilde{\mathbf{U}}, P_{max}) = \begin{cases} \text{maximize} & \min_{1 \leq k \leq K} \frac{\text{SINR}_{k}^{(DL)}}{\gamma_{k}}\\ \text{subject to} & \sum_{k} p_{k} = P_{max} \end{cases}
$$
(17)

 $\blacktriangleright \; \mathcal{S}^{DL}(\mathbf{U}, P_{max})$ is strictly monotonically increasing in $P_{max}.$

If \tilde{p} is a global maximizer of the optimization problem, then

$$
S^{DL}(\tilde{\mathbf{U}}, P_{max}) = \frac{\text{SINR}_{k}^{(DL)}(\tilde{\mathbf{U}}, \tilde{\mathbf{p}})}{\gamma_{k}}
$$

\n
$$
P_{max} = {\|\tilde{\mathbf{p}}\|_{1}}
$$
\n(18)

Further we can elaborate Eq (18) as

$$
\tilde{\mathbf{p}} \frac{1}{\mathcal{S}^{DL}(\tilde{\mathbf{U}}, P_{max})} = \mathbf{D} \mathbf{G}(\tilde{\mathbf{U}}) \tilde{\mathbf{p}} + \mathbf{D} \mathbf{n}
$$
\n(19a)\n
$$
\frac{1}{\mathcal{S}^{DL}(\tilde{\mathbf{U}}, P_{max})} = \frac{1}{P_{max}} \mathbf{1}^{\mathsf{T}} \mathbf{D} \mathbf{G}(\tilde{\mathbf{U}}) \tilde{\mathbf{p}} + \frac{1}{P_{max}} \mathbf{1}^{\mathsf{T}} \mathbf{D} \mathbf{n}
$$
\n(19b)

 \triangleright We can form eigen-system as

$$
\underbrace{\begin{bmatrix} \mathbf{DG}(\tilde{\mathbf{U}}) & \mathbf{Dn} \\ \frac{1}{P_{max}} \mathbf{1}^{\mathsf{T}} \mathbf{DG}(\tilde{\mathbf{U}}) & \frac{1}{P_{max}} \mathbf{1}^{\mathsf{T}} \mathbf{Dn} \end{bmatrix}}_{\Upsilon(\tilde{\mathbf{U}}, P_{max})} \begin{bmatrix} \tilde{\mathbf{p}} \\ 1 \end{bmatrix} = \frac{1}{\mathcal{S}^{DL}(\tilde{\mathbf{U}}, P_{max})} \begin{bmatrix} \tilde{\mathbf{p}} \\ 1 \end{bmatrix}
$$
 (20)

KID KA KERKER KID KO

 \triangleright The solution for SINR balancing problem [\(17\)](#page-72-0) is now given as

$$
S^{DL}(\tilde{\mathbf{U}}, P_{max}) = \frac{1}{\lambda_{max}(\Upsilon(\tilde{\mathbf{U}}, P_{max}))}
$$
(21)
\n• Similarly for uplink, and $\tilde{\mathbf{q}}_{ext} = \begin{pmatrix} \tilde{\mathbf{q}} \\ 1 \end{pmatrix}$

$$
\underbrace{\left[\underset{P_{max}}{\mathbf{D}\mathbf{G}^{\mathsf{T}}(\tilde{\mathbf{U}})}\mathbf{D}\mathbf{n}}_{\Lambda(\tilde{\mathbf{U}},P_{max})}\mathbf{D}\mathbf{n}}_{\Lambda(\tilde{\mathbf{U}},P_{max})}\right]\tilde{\mathbf{q}}_{\text{ext}} = \lambda_{\text{max}}(\Lambda(\tilde{\mathbf{U}},P_{max}))\tilde{\mathbf{q}}_{\text{ext}} \quad (22)
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Duality-SINR Balancing

- For a given q_{ext} , the cost function $\lambda(U, q_{ext})$ is minimized by independent maximization of the uplink SINRs.
- \blacktriangleright The optimal \mathbf{u}_k could be now calculated as

$$
\hat{\mathbf{u}}_k = \arg \max_{\mathbf{u}_k} \frac{\mathbf{u}_k^H \mathbf{h}_k \mathbf{h}_k^H \mathbf{u}_k}{\mathbf{u}_k^H \left(\sum_{j=1, j \neq k}^K q_j \hat{\mathbf{h}}_j \hat{\mathbf{h}}_j^H + \sigma_{z_k}^2 \mathbf{I} \right) \mathbf{u}_k}.
$$
 (23)

KORKAR KERKER EL VOLO

- \blacktriangleright Eq. [\(23\)](#page-76-0) is maximizing Rayleigh quotient problem.
- \triangleright Eq. [\(23\)](#page-76-0) is solved via dominant generalized eigen-vectors of matrix pairs $(\mathbf{H}_k, \mathbf{W}_k)$.

Power Minimization Algorithm

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

WHAT IF CHANNEL IS NOT PERFECT?

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

System Model

- \blacktriangleright MISO channel setting with N_t transmit antennas and K users with single antenna.
- **Consider the transmit beamforming vector** \mathbf{u}_k **.**
- \blacktriangleright Transmit signal from BS

$$
\mathbf{x} = \sum_{k=1}^{K} \mathbf{u}_k s_k, \tag{24}
$$

Received signal at user k

$$
y_k = \mathbf{h}_k^{\mathsf{H}} \left(\sum_{j=1}^K s_j \mathbf{u}_j \right) + z_k, \tag{25}
$$

 \blacktriangleright The instantaneous SINR for user k

$$
\text{SINR}_k(\Phi_k) = \frac{|\mathbf{h}_k^H \mathbf{u}_k|^2}{\sum_{j \neq k} |\mathbf{h}_k^H \mathbf{u}_j|^2 + \sigma_{z_k}^2}.
$$
 (26)

 \blacktriangleright Common assumption:

イロト イ御 トイミト イミト ニミー りんぴ

 \blacktriangleright Common assumption: BS has perfect knowledge of channel

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright Common assumption: BS has perfect knowledge of channel
- \blacktriangleright Reality:

 \blacktriangleright Common assumption: BS has perfect knowledge of channel

 \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

 \blacktriangleright Common assumption: BS has perfect knowledge of channel

 \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright Causes:

- \blacktriangleright Common assumption: BS has perfect knowledge of channel
- \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright Causes:

Estimation errors and feedback delays.

- \blacktriangleright Common assumption: BS has perfect knowledge of channel
- \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright Causes:

Estimation errors and feedback delays.

 \blacktriangleright Effects:

- \blacktriangleright Common assumption: BS has perfect knowledge of channel
- \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

 \blacktriangleright Causes:

Estimation errors and feedback delays.

 \blacktriangleright Effects:

BSs cannot predict exactly the required SINR at the users.

KORK ERKER ADE YOUR

- \blacktriangleright Common assumption: BS has perfect knowledge of channel
- \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

 \blacktriangleright Causes:

Estimation errors and feedback delays.

 \blacktriangleright Effects:

BSs cannot predict exactly the required SINR at the users.

KORK ERKER ADE YOUR

 \triangleright What can be done?

- \blacktriangleright Common assumption: BS has perfect knowledge of channel
- \blacktriangleright Reality:

No perfect CSIT available and constitute error within.

 \blacktriangleright Causes:

Estimation errors and feedback delays.

 \blacktriangleright Effects:

BSs cannot predict exactly the required SINR at the users.

KORK ERKER ADE YOUR

 \triangleright What can be done? Estimate SINR under imperfect CSIT

 \triangleright We model the imperfect CSIT as

$$
\mathbf{h}_k = \hat{\mathbf{h}}_k + \mathbf{e}_{\mathbf{h}_k},\tag{27}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $\hat{\mathbf{h}}_k$ is the estimated channel, $\mathbf{e}_{\mathbf{h}_k}$ is the respective channel error.

 \triangleright The SINR with channel error incorporated will be

$$
\Phi_{k_{\text{(error)}}} = \frac{|(\hat{\mathbf{h}}_k + \mathbf{e}_{\mathbf{h}_k})^{\mathsf{H}} \mathbf{u}_k|^2}{\sum_{j \neq k} |(\hat{\mathbf{h}}_k + \mathbf{e}_{\mathbf{h}_k})^{\mathsf{H}} \mathbf{u}_j|^2 + \sigma_{z_k}^2}.
$$
 (28)

 \triangleright We model the imperfect CSIT as

$$
\mathbf{h}_k = \hat{\mathbf{h}}_k + \mathbf{e}_{\mathbf{h}_k},\tag{27}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $\hat{\mathbf{h}}_k$ is the estimated channel, $\mathbf{e}_{\mathbf{h}_k}$ is the respective channel error.

 \triangleright The SINR with channel error incorporated will be

$$
\Phi_{k_{\text{(error)}}} = \frac{|(\hat{\mathbf{h}}_k + \mathbf{e}_{\mathbf{h}_k})^{\mathsf{H}} \mathbf{u}_k|^2}{\sum_{j \neq k} |(\hat{\mathbf{h}}_k + \mathbf{e}_{\mathbf{h}_k})^{\mathsf{H}} \mathbf{u}_j|^2 + \sigma_{z_k}^2}.
$$
(28)

 \triangleright The problem again? We still do not know the errors.

SINR Estimate under imperfect CSIT

 \blacktriangleright The estimated received signal

$$
\hat{y}_k = \hat{\mathbf{h}}_k^H \mathbf{u}_k s_k + \mathbf{e}_{h_k} \mathbf{u}_k s_k + \sum_{j=1, j \neq k}^K \hat{\mathbf{h}}_k^H \mathbf{u}_j s_j + \sum_{j=1, j \neq k}^K \mathbf{e}_{h_k}^H s_j \mathbf{u}_j + z_k,
$$
\n
$$
= \underbrace{\hat{\mathbf{h}}_k^H \mathbf{u}_k s_k}_{\text{estimated interference}} + \sum_{j=1, j \neq k}^K \hat{\mathbf{h}}_k^H \mathbf{u}_j s_j + \sum_{k=1,}^K \mathbf{e}_{h_k}^H s_k \mathbf{u}_k + z_k.
$$

unknown interference

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

SINR Estimate under imperfect CSIT

 \blacktriangleright The estimated received signal

$$
\hat{y}_k = \hat{\mathbf{h}}_k^H \mathbf{u}_k s_k + \mathbf{e}_{h_k} \mathbf{u}_k s_k + \sum_{j=1, j \neq k}^K \hat{\mathbf{h}}_k^H \mathbf{u}_j s_j + \sum_{j=1, j \neq k}^K \mathbf{e}_{h_k}^H s_j \mathbf{u}_j + z_k,
$$
\n
$$
= \underbrace{\hat{\mathbf{h}}_k^H \mathbf{u}_k s_k}_{\text{estimated transferference}} + \sum_{j=1, j \neq k}^K \hat{\mathbf{h}}_k^H \mathbf{u}_j s_j + \sum_{k=1, \atop \text{unknown interference}}^K \mathbf{e}_{h_k}^H s_k \mathbf{u}_k + z_k.
$$

 \triangleright The biased estimated of SINR will be now

$$
\hat{\Phi}_{k_{\text{(biased)}}} = \frac{|\hat{\mathbf{h}}_k^{\text{H}} \mathbf{u}_k|^2}{\sum_{j=1, j \neq k} |\hat{\mathbf{h}}_k^{\text{H}} \mathbf{u}_j|^2 + \sigma_{\mathbf{e}_{\mathbf{h}_k}}^2 \text{Trace}(\mathbf{U}\mathbf{U}^{\text{H}}) + \sigma_{z_k}^2}
$$
(30)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Robustness of Estimate

Comparison against unbiased

 \triangleright The unbiased estimation of SINR

$$
\hat{\Phi}_{k_{(\text{unbiased})}} = \frac{|(\hat{\mathbf{h}}_k)^{\mathsf{H}} \mathbf{u}_k|^2}{\sum_{j \neq k} |(\hat{\mathbf{h}}_k)^{\mathsf{H}} \mathbf{u}_j|^2 + \sigma_{z_k}^2}.
$$
\n(31)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Consider estimation errors of unbiased and biased estimations.

$$
\begin{aligned} \Delta\hat{\Phi}_{k_{(\text{unbiased})}} &\triangleq \hat{\Phi}_{k_{(\text{unbiased})}} - \Phi_k, \\ \Delta\hat{\Phi}_{k_{(\text{biased})}} &\triangleq \hat{\Phi}_{k_{(\text{biased})}} - \Phi_k, \end{aligned}
$$

 \blacktriangleright The deviation of error holds following equality

$$
\sigma_{\Delta\hat{\Phi}_{k_{(\text{biased})}}} = \frac{\sigma_{\mathbf{e}_{\mathbf{h}_k}}}{\sqrt{2}\left((1 + \sigma_{\mathbf{e}_{\mathbf{h}_k}}^2) + \frac{(\sigma_{z_k}^2 - \text{Trace}(\mathbf{u}_k \mathbf{u}_k^{\mathsf{H}}))}{\text{Trace}(\mathbf{U}\mathbf{U}^{\mathsf{H}})} \right)} \sigma_{\Delta\hat{\Phi}_{k_{(\text{unbiased})}}}.
$$
\n(33)

Comparison against unbiased

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$ $\bar{\Xi}$ 2990

Back to Power Minimization Problem

 \triangleright The SINR constraint in presence of channel error is

$$
p_k G_{kk} \ge \gamma_k \left(\sum_{j=1, j \neq k}^K p_j G_{kj} + \sum_k p_k \sigma_{\mathbf{e}_{\mathbf{h}_k}}^2 + \sigma_{z_k}^2 \right). \tag{34}
$$

where $G_{kj} = |\hat{\mathbf{h}}_{k}^{H}\mathbf{u}_{j}|^{2}$. \blacktriangleright We now define for $a_k = \sigma_{\mathbf{e}_{\mathbf{h}_k}}^2$

$$
\mathbf{D} = \begin{bmatrix} \frac{\gamma_1}{G_{11}} & 0 & \cdots & 0 \\ 0 & \frac{\gamma_2}{G_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\gamma_K}{G_{KK}} \end{bmatrix}, \ \mathbf{G}_{\mathbf{I}} = \begin{bmatrix} a_1 & (G_{12} + a_2) & \cdots & G_{1K} + a_K \\ (G_{21} + a_1) & a_2 & \cdots & G_{2K} + a_K \\ \vdots & \vdots & \ddots & \vdots \\ (G_{K1} + a_1) & (G_{K2} + a_2) & \cdots & a_K \end{bmatrix}.
$$
 (35)

In matrix form, the SINR constraint can be written as

$$
(\mathbf{I} - \mathbf{D}\mathbf{G}_{\mathbf{I}})\mathbf{p} \geq \mathbf{D}\mathbf{n},\tag{36}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Power Minimization Problem

 \blacktriangleright The optimal \mathbf{u}_k can be calculated as 'maximizing Rayleigh quotient' problem

$$
\hat{\mathbf{u}}_{k} = \arg \max_{\mathbf{u}_{k}} \frac{\mathbf{u}_{k}^H \hat{\mathbf{h}}_{k}^H \mathbf{u}_{k}}{\mathbf{u}_{k}^H}
$$
\n
$$
\mathbf{u}_{k}^H \underbrace{\left(\sum_{j=1, j \neq k}^{K} q_{j} \hat{\mathbf{h}}_{j} \hat{\mathbf{h}}_{j}^H + \sigma_{z_k}^2 \mathbf{I} + \sum_{k} q_{k} \sigma_{\mathbf{e}_{\mathbf{h}_{k}}}^2 \mathbf{I}\right)}_{\mathbf{W}_{k}}.
$$
\n(37)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright The optimal u 's are given by the dominant generalized eigenvectors of matrix pairs $(\mathbf{H}_k, \mathbf{W}_k)$.

Results: Convergence of Algorithm

 $2Q$

Results: Comparison of different errors

 2990

Future Works

 \triangleright The stochastic SINR (for high SNR) for channel error is given as

$$
\hat{\Phi}_{k_{\text{(biased)}}} = \frac{|\hat{\mathbf{h}}_k^{\text{H}} \mathbf{u}_k|^2}{\sum_{j=1, j \neq k}^K |\hat{\mathbf{h}}_k^{\text{H}} \mathbf{u}_j|^2 + \underbrace{\mathbf{e}_{h_k}^{\text{H}} \mathbf{U} \mathbf{U}^{\text{H}} \mathbf{e}_{h_k}}_{X_1} + \sigma_{z_k}^2}
$$
(38)

- \blacktriangleright X_1 is gamma distributed $\Gamma(x_1; a, b)$ with shape parameter $a \geq 0$, and scale parameter $b \geq 0$.
- \blacktriangleright The density function is given as

$$
p_{X_1}(x_1; a, b) = \frac{1}{b^a \Gamma(a)} x_1^{a-1} e^{\left(\frac{-x_1}{b}\right)}.
$$
 (39)

 \blacktriangleright The parameters a and b is given as

$$
a = \frac{(\text{Tr}[\mathbf{U}\mathbf{U}^{\mathsf{H}}])^{2}}{\text{Tr}[(\mathbf{U}\mathbf{U}^{\mathsf{H}})^{2}]}
$$
(40a)

$$
b = \frac{\sigma_{e_{\mathbf{h}_{k}}}^{2} \text{Tr}[(\mathbf{U}\mathbf{U}^{\mathsf{H}})^{2}]}{\text{Tr}[\mathbf{U}\mathbf{U}^{\mathsf{H}}]}
$$
(40b)

Future Works-Estimating Distribution

 \blacktriangleright Based on distribution of X_1 , the estimated SINR is distributed as

$$
p_{\hat{\Phi}_k}(\hat{\phi}, a, b) = \frac{c}{\hat{\phi}^2} \frac{\left(\frac{c}{\hat{\phi}} - \delta\right)^{a-1} \exp\left(\frac{\frac{c}{\hat{\phi}} - \delta}{b}\right)}{b^a \Gamma(a)},
$$
(41)

where the constants c and δ are given as

$$
c = |\hat{\mathbf{h}}_k^H \mathbf{u}_k|^2, \tag{42a}
$$

$$
\delta = \sum_{j=1,j\neq k}^{K} |\hat{\mathbf{h}}_k^{\mathsf{H}} \mathbf{u}_j|^2 + \sigma_{z_k}^2,
$$
 (42b)

 \triangleright As an example, the probabilistic constrained power minimization problem can be written as

$$
\mathcal{S}_{\text{Prob(MISO)}} = \begin{cases} \text{minimize} & \sum_{k=1}^{K} \|\mathbf{u}_k\|^2\\ \text{subject to} & \text{Prob}\{\text{SINR}_k \ge \gamma_k\} \ge 1 - \rho_k & 1 \le k \le K, \end{cases} \tag{43}
$$

Estimating Distribution of SINR

 2990

Future Works

- \triangleright The channel error case could be now extended to probabilistic approach.
- ▶ Consider different channel errors: uncertainty region bounded / not bounded.
- ▶ Extend the 'Power Minimization', 'Max-min SINR', 'Sum-Rate Maximization' problem to MIMO multi-cell cases.

KORK ERKER ADE YOUR

- ▶ Implement 'Centralized' and 'Decentralized' processing schemes.
- \triangleright Compare all three problems under same umbrella.

Thank You

Questions?

Suggestions!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @