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Superposition Block Markov Encoding in the Relay Channel

Gaussian Relay Channel Model

one sender and one receiver with a
number of relays;

relays help the communication from
the sender to the receiver.
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number of relays;
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A sender X and an ultimate intended receiver Y;

The Gaussian relay channel is given by

Y1 = X + Z1

Y = X +X1 + Z2,

where Z1 and Z2 are independent zero-mean Gaussian random variables with
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the sender to the receiver.

A sender X and an ultimate intended receiver Y;

The Gaussian relay channel is given by

Y1 = X + Z1

Y = X +X1 + Z2,

where Z1 and Z2 are independent zero-mean Gaussian random variables with
variance N1 and N2, respectively;

Achievable rate of the Gaussian Relay Channel

The decode-forward achievable rate is

C = max
0≤α≤1

min
{

C (
P +P1 + 2

√
αPP1

N1 +N2

),C (
αP

N1

)
}

,

where α = 1 − α.
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The data are equally grouped into B blocks;

Initially, the source (S) broadcasts a codeword that corresponds to the first data
block to the relay (R) and the destination (D). Since the code rate is greater than
the capacity of the link S→ D (otherwise, no relay is required), D is not able to
recover reliably this data block;
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Then the source and the relay cooperatively transmit more information about the
first data block;
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After removing the effect of the first data block, the system returns to the initial
state;
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The data are equally grouped into B blocks;

Initially, the source (S) broadcasts a codeword that corresponds to the first data
block to the relay (R) and the destination (D). Since the code rate is greater than
the capacity of the link S→ D (otherwise, no relay is required), D is not able to
recover reliably this data block;

Then the source and the relay cooperatively transmit more information about the
first data block;

In the meanwhile, the source “superimposes” a codeword that corresponds to the
second data block;

Finally, the destination recovers (reliably) the first data block from the two
successive received blocks;

After removing the effect of the first data block, the system returns to the initial
state;

This process iterates B + 1 times until all B blocks of data are sent successfully.
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Superposition Block Markov Encoding (SBME) in the

Relay Channel

The SBME is a powerful technique in the multiuser information-theoretic
field;

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 6 / 104



Superposition Block Markov Encoding (SBME) in the

Relay Channel

The SBME is a powerful technique in the multiuser information-theoretic
field;

Can we apply a multiuser technique to single-user systems?

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 6 / 104



Superposition Block Markov Encoding (SBME) in the

Relay Channel

The SBME is a powerful technique in the multiuser information-theoretic
field;

Can we apply a multiuser technique to single-user systems?

It is possible. Actually, we have ever shown how to design bandwidth-efficient
coded modulation by the use of“multiple-access signalling”together with the
successive decoding [See, for example, Xiao Ma and Li Ping 2004: Coded
Modulation Using Superimposed Binary Codes];
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Superposition Block Markov Encoding (SBME) in the

Relay Channel

The SBME is a powerful technique in the multiuser information-theoretic
field;

Can we apply a multiuser technique to single-user systems?

It is possible. Actually, we have ever shown how to design bandwidth-efficient
coded modulation by the use of“multiple-access signalling”together with the
successive decoding [See, for example, Xiao Ma and Li Ping 2004: Coded
Modulation Using Superimposed Binary Codes];

We apply a similar strategy (SBME) to the single-user communication
system, resulting in the block Markov superposition transmission (BMST)
scheme.
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Short Codes

Short Convolutional Codes
Convolutional codes with short constraint lengths: e.g.,
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Figure: A (2, 1, 2) convolutional code encoder.
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Figure: A (2, 1, 2) convolutional code encoder.

Short Block Codes
Block codes with short length: repetition codes, single parity-check codes, Hamming
codes, etc. We are actually interested in Cartesian product of short block codes. For
example [2, 1, 2]5000, [6, 5, 2]2000, [7, 4, 3]2500;
[7, 4, 3]2500: Suppose that we intend to transmit 10000 bits using Hamming [7, 4, 3]
code. We first group the bits into sub-blocks of length 4 and then encode
(independently) each sub-block into a sub-block of length 7.
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Figure: A (2, 1, 2) convolutional code encoder.

Short Block Codes
Block codes with short length: repetition codes, single parity-check codes, Hamming
codes, etc. We are actually interested in Cartesian product of short block codes. For
example [2, 1, 2]5000, [6, 5, 2]2000, [7, 4, 3]2500;
[7, 4, 3]2500: Suppose that we intend to transmit 10000 bits using Hamming [7, 4, 3]
code. We first group the bits into sub-blocks of length 4 and then encode
(independently) each sub-block into a sub-block of length 7.

Actually, short codes can be any code that has fast encoding algorithm and soft-in
soft-out (SISO) decoding algorithm.
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Block Markov Superposition Transmission

Let C be the short code (called basic code) in the transmission scheme.
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1 The data are equally grouped into B blocks;

2 Initially, the transmitter sends a codeword from C that corresponds to the first data
block;
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BMST Scheme

1 The data are equally grouped into B blocks;

2 Initially, the transmitter sends a codeword from C that corresponds to the first data
block;

3 Since the short code is weak, the receiver is unable to recover reliably the data from
the current received block. Hence the transmitter transmits the codeword (possibly
in its interleaved version) one more time.
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Block Markov Superposition Transmission

Let C be the short code (called basic code) in the transmission scheme.
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BMST Scheme

1 The data are equally grouped into B blocks;

2 Initially, the transmitter sends a codeword from C that corresponds to the first data
block;

3 Since the short code is weak, the receiver is unable to recover reliably the data from
the current received block. Hence the transmitter transmits the codeword (possibly
in its interleaved version) one more time.

4 In the meanwhile, a fresh codeword from C that corresponds to the second data
block is superimposed on the second block transmission.
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Block Markov Superposition Transmission
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Block Markov Superposition Transmission

WR

WS

T

WS

WUWU

WR

+

+

T
VWXYZ[VWXYZ[VWXYZ[

T

BMST Scheme (Continued)

5 Finally, the receiver recovers the first data block from the two successive received
blocks.
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BMST Scheme (Continued)

5 Finally, the receiver recovers the first data block from the two successive received
blocks.

6 After removing the effect of the first data block, the system returns to the initial
state;
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Block Markov Superposition Transmission
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BMST Scheme (Continued)

5 Finally, the receiver recovers the first data block from the two successive received
blocks.

6 After removing the effect of the first data block, the system returns to the initial
state;

7 This process iterates B + 1 times until all B blocks of data are sent successfully.

Repetition increases reliability.

Superposition keeps rate unchanged.
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What does the performance curve look like?

SNR
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The maximal coding gain for a BMST system with memory m compared with the
basic code can be 10 log10 (m + 1).
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BMST with BPSK over AWGN channels
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1+D2, 1 +D +D2]. The system encodes L = 1000

sub-blocks of data and the iterative sliding-window decoding algorithm is performed,
where the encoding memories and the decoding delays are specified in the legends.
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encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Shannon limit of rate 4/7
Hamming Code [7, 4]
 m = 1,  d = 7

Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 32 / 104



BMST with BPSK over AWGN channels

0 1 2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BCJR

10log
10

(2)

10log
10

(3)

10log
10

(4)

 E
b
/N

0
(dB)

B
E

R

 

 
Shannon limit of rate 4/7
Hamming Code [7, 4]
 m = 1,  d = 7
 m = 2,  d = 7

Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Shannon limit of rate 4/7
Hamming Code [7, 4]
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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Shannon limit of rate 4/7
Hamming Code [7, 4]
 m = 1,  d = 7
 m = 2,  d = 7
 m = 3,  d = 7
 m = 4,  d = 7

Figure: The basic code is the Cartesian product of Hamming code [7, 4]2500. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the
legends.
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BMST with different code rates using BPSK over AWGN

channels
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Repetition codes

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes

RC[6,1]2000,  m = 10,  d = 30

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes

RC[6,1]2000,  m = 10,  d = 30

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

RC[2,1]5000,  m = 8,   d = 24

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes
SPC[3,2]

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

RC[2,1]5000,  m = 8,   d = 24

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes
SPC[3,2]

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

RC[2,1]5000,  m = 8,   d = 24

SPC[3,2]4000,  m = 5,  d = 15

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes
SPC[3,2]
SPC[6,5]

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

RC[2,1]5000,  m = 8,   d = 24

SPC[3,2]4000,  m = 5,  d = 15

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Repetition codes
SPC[3,2]
SPC[6,5]

RC[6,1]2000,  m = 10,  d = 30

RC[3,1]4000,  m = 9,   d = 27

RC[2,1]5000,  m = 8,   d = 24

SPC[3,2]4000,  m = 5,  d = 15

SPC[6,5]2000,  m = 3,  d = 9

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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BMST with Nonlinear Basic Codes
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Shannon limit of rate 8/15
NR(15,256,5)

Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Shannon limit of rate 8/15
NR(15,256,5)
Lower bound for  m = 1

Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Shannon limit of rate 8/15
NR(15,256,5)
 m = 1,  d = 3
Lower bound for  m = 1

Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Shannon limit of rate 8/15
NR(15,256,5)
 m = 1,  d = 3
Lower bound for  m = 1
Lower bound for  m = 2

Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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 m = 1,  d = 3
 m = 2,  d = 6
 m = 3,  d = 9
Lower bound for  m = 1
Lower bound for  m = 2
Lower bound for  m = 3

Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15, 256, 5)800. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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BMST with Long Basic Codes
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RS + CC,  k = 1784,  n = 4092

Figure: The basic code C is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over F256 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D) = [1 +D +D2

+D3
+D6, 1 +D2

+ D3
+D5

+D6]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.
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Figure: The basic code C is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over F256 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D) = [1 +D +D2
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+ D3
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+D6]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 56 / 104



BMST with Long Basic Codes

−1 −0.5 0 0.5 1 1.5 2 2.5 3

10
−4

10
−3

10
−2

10
−1

10
0

BM + BCJR

10log
10

(2)

 E
b
/N

0
(dB)

B
E

R

 

 
RS + CC,  k = 1784,  n = 4092
 m = 1,  d = 4

Figure: The basic code C is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over F256 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D) = [1 +D +D2

+D3
+D6, 1 +D2

+ D3
+D5

+D6]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.
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A General Procedure to Design BMST

Given a target code rate Rtarget and a target BER ptarget, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.
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A General Procedure to Design BMST

Given a target code rate Rtarget and a target BER ptarget, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

Find k and n as small as possible such that Rtarget = k/n.

Find a code C [n , k ], which can be linear, nonlinear or even randomly generated.

Find the performance curve pb = fbasic (γb) of the code C [n , k ], where pb is the
BER and γb , Eb/N0 in dB.

From the performance curve, find the required Eb/N0 to achieve the target BER.
That is, find γtarget such that fbasic(γtarget) ≤ ptarget;

Find the Shannon limit for the code rate R, denoted by γlim;

Determine the encoding memory m by 10 log10(m + 1) ≥ γtarget − γlim. That is,
m =

⌈

10
γtarget−γlim

10 − 1
⌉

, where ⌈x ⌉ stands for the minimum integer greater than or

equal to x ;
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Find the performance curve pb = fbasic (γb) of the code C [n , k ], where pb is the
BER and γb , Eb/N0 in dB.

From the performance curve, find the required Eb/N0 to achieve the target BER.
That is, find γtarget such that fbasic(γtarget) ≤ ptarget;

Find the Shannon limit for the code rate R, denoted by γlim;

Determine the encoding memory m by 10 log10(m + 1) ≥ γtarget − γlim. That is,
m =

⌈

10
γtarget−γlim

10 − 1
⌉

, where ⌈x ⌉ stands for the minimum integer greater than or

equal to x ;

Take the B -fold Cartesian product of the code C [n , k ]B as the basic code. To
approach the Shannon limit, we set nB ≥ 10000.
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A General Procedure to Design BMST

Given a target code rate Rtarget and a target BER ptarget, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

Find k and n as small as possible such that Rtarget = k/n.

Find a code C [n , k ], which can be linear, nonlinear or even randomly generated.

Find the performance curve pb = fbasic (γb) of the code C [n , k ], where pb is the
BER and γb , Eb/N0 in dB.

From the performance curve, find the required Eb/N0 to achieve the target BER.
That is, find γtarget such that fbasic(γtarget) ≤ ptarget;

Find the Shannon limit for the code rate R, denoted by γlim;

Determine the encoding memory m by 10 log10(m + 1) ≥ γtarget − γlim. That is,
m =

⌈

10
γtarget−γlim

10 − 1
⌉

, where ⌈x ⌉ stands for the minimum integer greater than or

equal to x ;

Take the B -fold Cartesian product of the code C [n , k ]B as the basic code. To
approach the Shannon limit, we set nB ≥ 10000.

Generate m + 1 interleavers randomly.
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A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19

Gap (dB) 6.59 9.40 14.80

m 3 8 30
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b
/N

0
(dB)

B
E

R

 

 

Shannon limit of rate 1/2
RC[2,1]

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.
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A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19
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Shannon limit of rate 1/2
RC[2,1]
lower bound for  m = 3

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 60 / 104



A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19

Gap (dB) 6.59 9.40 14.80

m 3 8 30
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Shannon limit of rate 1/2
RC[2,1]

RC[2,1]5000,  m = 3,  d = 3

RC[2,1]5000,  m = 3,  d = 9
lower bound for  m = 3

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.
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A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19

Gap (dB) 6.59 9.40 14.80

m 3 8 30
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Shannon limit of rate 1/2
RC[2,1]

RC[2,1]5000,  m = 3,  d = 3

RC[2,1]5000,  m = 3,  d = 9
lower bound for  m = 3
lower bound for  m = 8

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.
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A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19

Gap (dB) 6.59 9.40 14.80

m 3 8 30
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Shannon limit of rate 1/2
RC[2,1]

RC[2,1]5000,  m = 3,  d = 3

RC[2,1]5000,  m = 3,  d = 9

RC[2,1]5000,  m = 8,  d = 8
lower bound for  m = 3
lower bound for  m = 8

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.
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A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19

Gap (dB) 6.59 9.40 14.80

m 3 8 30
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Shannon limit of rate 1/2
RC[2,1]

RC[2,1]5000,  m = 3,  d = 3

RC[2,1]5000,  m = 3,  d = 9

RC[2,1]5000,  m = 8,  d = 8
lower bound for  m = 3
lower bound for  m = 8
lower bound for  m = 30

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.
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A Construction Example

For a target code rate Rtarget = 0.5 and different target BERs ptarget , the repetition code
[2, 1](k = 1,n = 2) with 0→ 00 and 1→ 11 is chosen.

The encoding memories required to approach the Shannon limit using the BMST of RC [2, 1]B is listed
in the table.

ptarget 3 × 10−3 10−5 10−15

γtarget (dB) 5.78 9.59 14.99

γlim (dB) 0.19 0.19 0.19

Gap (dB) 6.59 9.40 14.80

m 3 8 30
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Shannon limit of rate 1/2
RC[2,1]

RC[2,1]5000,  m = 3,  d = 3

RC[2,1]5000,  m = 3,  d = 9

RC[2,1]5000,  m = 8,  d = 8

RC[2,1]5000,  m = 30,  d = 60
lower bound for  m = 3
lower bound for  m = 8
lower bound for  m = 30

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2, 1]5000. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with
Imax = 18.
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BMST Can also Combine with High-order Modulations
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Figure: The BMST system with 8-PSK.
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BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
Lower bound for  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 69 / 104



BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
BMST−BICM,  m = 1,  d = 3
Lower bound for  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
CC,  k = 5500,  n = 11004,  m = 2
BMST−BICM,  m = 1,  d = 3
Lower bound for  m = 1
Lower bound for  m = 2

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
CC,  k = 5500,  n = 11004,  m = 2
BMST−BICM,  m = 1,  d = 3
BMST−BICM,  m = 2,  d = 5
Lower bound for  m = 1
Lower bound for  m = 2

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
CC,  k = 5500,  n = 11004,  m = 2
CC,  k = 5500,  n = 11004,  m = 3
BMST−BICM,  m = 1,  d = 3
BMST−BICM,  m = 2,  d = 5
Lower bound for  m = 1
Lower bound for  m = 2
Lower bound for  m = 3

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
CC,  k = 5500,  n = 11004,  m = 2
CC,  k = 5500,  n = 11004,  m = 3
BMST−BICM,  m = 1,  d = 3
BMST−BICM,  m = 2,  d = 5
BMST−BICM,  m = 3,  d = 7
Lower bound for  m = 1
Lower bound for  m = 2
Lower bound for  m = 3

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
Lower bound for  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
BMST−BICM,  m = 1,  d = 3
Lower bound for  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
CC,  k = 5500,  n = 11004,  m = 2
BMST−BICM,  m = 1,  d = 3
Lower bound for  m = 1
Lower bound for  m = 2

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels
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Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1
CC,  k = 5500,  n = 11004,  m = 2
BMST−BICM,  m = 1,  d = 3
BMST−BICM,  m = 2,  d = 5
Lower bound for  m = 1
Lower bound for  m = 2

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with Continuous phase modulation (CPM)
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Figure: The BMST system with MSK.
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Shnnon limit of rate 1/2
CC,  k = 10000,  n = 20004,  m = 0

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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CC,  k = 10000,  n = 20004,  m = 0
CC,  k = 10000,  n = 20004,  m = 1
CC,  k = 10000,  n = 20004,  m = 2
BMST−NRMSK,  m = 1
lower bound for  m = 1
lower bound for  m = 2

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 +D2, 1 +D +D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with Spacial Modulation (SM)
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Figure: The spacial modulation with 4 transmitter antennas and 4 receiver antennas
using BPSK modulation. Only one antenna is active for each transmission.
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Figure: The spacial modulation with 4 transmitter antennas and 4 receiver antennas
using BPSK modulation. Only one antenna is active for each transmission.
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Figure: The BMST system with a 4 × 4 BPSK spacial modulation with only one antenna
being active for each transimission.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 92 / 104



BMST with Spacial Modulation over Rayleigh fading

channel
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Shannon limit for 1.5 bits/s/Hz
Uncoded, 4 × 4 BPSK

Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the polynomial
generator matrix G(D) = [1 +D2 ,1 +D +D2] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with Imax = 18 is performed.
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Conclusions

Conclusions
We presented a new method for constructing long codes from short codes;

The encoding process can be as fast as the short code, while the decoding
has a fixed but tunable delay.

With an iterative sliding-window decoding algorithm, the performance of
BMST can approach the derived lower bound in low error rate region;

This scheme can be generalized, for example, to non-binary codes, lattice
codes, and so on.

In principle, any code can be the basic code as long as
1 it is defined over a group (but not necessarily group code; (This is required by

the superposition before transmission).
2 it has an efficient encoding algorithm;
3 it has an exact (or approximated) soft-in-soft-out (SISO) decoding algorithm.

The BMST scheme is easy to combine with high-order modulation,
continuous phase modulation (CPM), and even spacial modulation (SM) etc.
and has a good performance.
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