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Gaussian Relay Channel Model

Relay
@ one sender and one receiver with a
number of relays;
= @ relays help the communication from
Source Destination

the sender to the receiver.
@ A sender X and an ultimate intended receiver Y;

@ The Gaussian relay channel is given by
Y1 = X aF Z1
Y = X+Xi+ 2,

where Z; and Z, are independent zero-mean Gaussian random variables with
variance N; and N, respectively;
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Superposition Block Markov Encoding in the Relay Channel

Gaussian Relay Channel Model

Relay
@ one sender and one receiver with a
number of relays;
= @ relays help the communication from
Source Destination

the sender to the receiver.
@ A sender X and an ultimate intended receiver Y;

@ The Gaussian relay channel is given by
Y1 = X aF Z1
Y = X + X1 + ZQ,

where Z; and Z, are independent zero-mean Gaussian random variables with
variance N; and N, respectively;

Achievable rate of the Gaussian Relay Channel

The decode-forward achievable rate is

P+ Py +2VaPP;

. aP
C= maxmm{C( NN, ), C(Wl)}

O<a<1

where @ = 1 — a.
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@ The data are equally grouped into B blocks;

@ Initially, the source (S) broadcasts a codeword that corresponds to the first data
block to the relay (R) and the destination (D). Since the code rate is greater than
the capacity of the link S —» D (otherwise, no relay is required), D is not able to
recover reliably this data block;

@ Then the source and the relay cooperatively transmit more information about the
first data block;

@ In the meanwhile, the source “superimposes” a codeword that corresponds to the
second data block;

@ Finally, the destination recovers (reliably) the first data block from the two
successive received blocks;

@ After removing the effect of the first data block, the system returns to the initial
state;

@ This process iterates B + 1 times until all B blocks of data are sent successfully.
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Superposition Block Markov Encoding (SBME) in the

Relay Channel

@ The SBME is a powerful technique in the multiuser information-theoretic
field;
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Superposition Block Markov Encoding (SBME) in the

Relay Channel

@ The SBME is a powerful technique in the multiuser information-theoretic
field;

@ Can we apply a multiuser technique to single-user systems?

@ It is possible. Actually, we have ever shown how to design bandwidth-efficient
coded modulation by the use of “multiple-access signalling” together with the
successive decoding [See, for example, Xiao Ma and Li Ping 2004: Coded
Modulation Using Superimposed Binary Codes];

@ We apply a similar strategy (SBME) to the single-user communication
system, resulting in the block Markov superposition transmission (BMST)
scheme.
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Short Codes

Short Convolutional Codes

Convolutional codes with short constraint lengths: e.g.,

® ® C1(t)
Lo H

@ c 2(t)

Figure: A (2, 1,2) convolutional code encoder.
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Short Codes

Short Convolutional Codes

Convolutional codes with short constraint lengths: e.g.,

® ® C1(t)
Lo H

@ c 2(t)

Figure: A (2, 1,2) convolutional code encoder.

Short Block Codes

Block codes with short length: repetition codes, single parity-check codes, Hamming
codes, etc. We are actually interested in Cartesian product of short block codes. For
example [2,1,2]°°00 [6,5,2]2000 [7, 4, 3]2500;

[7,4,3]%°°: Suppose that we intend to transmit 10000 bits using Hamming [7, 4, 3]
code. We first group the bits into sub-blocks of length 4 and then encode
(independently) each sub-block into a sub-block of length 7.
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Short Codes

Short Convolutional Codes

Convolutional codes with short constraint lengths: e.g.,

@ @ C1(t)
)

@ c 2(1)

Figure: A (2,1,2) convolutional code encoder.

Short Block Codes

Block codes with short length: repetition codes, single parity-check codes, Hamming
codes, etc. We are actually interested in Cartesian product of short block codes. For
example [2, 1,2]5990, [6, 5,2]2990, [7, 4, 3]25%9;

[7,4,3]%°°: Suppose that we intend to transmit 10000 bits using Hamming [7, 4, 3]
code. We first group the bits into sub-blocks of length 4 and then encode
(independently) each sub-block into a sub-block of length 7.

Actually, short codes can be any code that has fast encoding algorithm and soft-in
soft-out (SISO) decoding algorithm.
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Let & be the short code (called basic code) in the transmission scheme.
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BMST Scheme

1 The data are equally grouped into B blocks;

2 Initially, the transmitter sends a codeword from % that corresponds to the first data
block;

3 Since the short code is weak, the receiver is unable to recover reliably the data from
the current received block. Hence the transmitter transmits the codeword (possibly
in its interleaved version) one more time.
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Let € be the short code (called basic code) in the transmission scheme.

L om V+V1 |
Lwm [ 7 ]
Lowm [ w
sijnal sijnal sijnal

BMST Scheme

1 The data are equally grouped into B blocks;

2 Initially, the transmitter sends a codeword from % that corresponds to the first data
block;

3 Since the short code is weak, the receiver is unable to recover reliably the data from
the current received block. Hence the transmitter transmits the codeword (possibly
in its interleaved version) one more time.

4 In the meanwhile, a fresh codeword from % that corresponds to the second data
block is superimposed on the second block transmission.
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BMST Scheme (Continued)
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BMST Scheme (Continued)

5 Finally, the receiver recovers the first data block from the two successive received
blocks.
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BMST Scheme (Continued)

5 Finally, the receiver recovers the first data block from the two successive received
blocks.

6 After removing the effect of the first data block, the system returns to the initial
state;
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Block Markov Superposition Transmission

L om %ﬁ |
B
Lows [ ws ]
sijnal sijnal sigial

BMST Scheme (Continued)

5 Finally, the receiver recovers the first data block from the two successive received
blocks.

6 After removing the effect of the first data block, the system returns to the initial
state;

7 This process iterates B + 1 times until all B blocks of data are sent successfully.

@ Repetition increases reliability.

@ Superposition keeps rate unchanged.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 10 / 104



Outline

© General Behavior of BMST
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What does the performance curve look like?

» SNR
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What does the performance curve look like?

BMST with larger m

Uncoded

Basic code

» SNR
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What does the pe

| uouuRys
-‘_._'_._._')—,'

ormance curve look like?

BMST with larger m

Uncoded

Basic code

» SNR

The maximal coding gain for a BMST system with memory m compared with the
basic code can be 10log;, (m + 1).
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r AWGN channels

; ‘-j-‘Shannrl\n limit of‘rate 1/2
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BER

3 4
E/N,(dB)

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?]. The system encodes L = 1000
sub-blocks of data and the iterative sliding-window decoding algorithm is performed,
where the encoding memories and the decoding delays are specified in the legends.
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r AWGN channels
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Figure: The basic code is the Cartesian product of Hamming code [7,4]2%%°. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the

legends.
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BMST with BPSK over AWGN channels
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Figure: The basic code is the Cartesian product of Hamming code [7,4]2%%°. The system
encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm
is performed, where the encoding memories and the decoding delays are specified in the

legends.
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BMST with different code rates using BPSK over AWGN

channels
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014 37 / 104



BMST with different code rates using BPSK over AWGN

channels

BER

10

107

10k

10°F

4

10

5|

10

10

10”7

Eremaig

- e -Repetition codes

4 5
E/N,(dB)

6

Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
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encoding memories and the decoding delays are specified in the legends. The vertical
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is either the Cartesian product of a repetition code or the
Cartesian product of a single parity-check code. All systems encode L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends. The vertical
dashed lines correspond to the respective Shannon limits.
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8%°. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories

and the decoding delays are specified in the legends.
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BMST with Nonlinear Basic Codes
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8°C. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8°C. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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BMST with Nonlinear
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8°C. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8°C. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8°C. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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BMST with Nonlinear
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Figure: The basic code is the Cartesian product of the optimum Nordstrom-Robinson
nonlinear code (15,256, 5)8°C. The system encodes L = 1000 sub-blocks of data and the
iterative sliding-window decoding algorithm is performed, where the encoding memories
and the decoding delays are specified in the legends.
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BMST with Long Basic Codes
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Figure: The basic code % is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over Fas6 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D)=[1+D+ D?+ D3+ D%, 1+ D?+ D3+ D>+ DF]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.
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Figure: The basic code % is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over Fas6 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D)=[1+D+ D?+ D3+ D%, 1+ D?+ D3+ D>+ DF]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.
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Figure: The basic code % is the Consultative Committee on Space Data System
(CCSDS) standard code of dimension k = 1784 and length n = 4092, where the outer
code is a [255, 223] Reed-Solomon (RS) code over Fas6 and the inner code is a
terminated convolutional code with the polynomial generator matrix
G(D)=[1+D+ D?+ D3+ D%, 1+ D?+ D3+ D>+ DF]. Other coding parameters of
the BMST system are L = 100 and Imax = 18.
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A General Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.
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@ Find £ and n as small as possible such that Riarget = /7.
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for designing a BMST system to approach the Shannon limit is as follows.

@ Find £ and n as small as possible such that Riarget = /7.

@ Find a code %[n, k], which can be linear, nonlinear or even randomly generated.
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A General Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

@ Find £ and n as small as possible such that Riarget = /7.
@ Find a code %[n, k], which can be linear, nonlinear or even randomly generated.

@ Find the performance curve py = foasic (¥s) of the code €[n, k], where p, is the
BER and vy, £ E,/Np in dB.
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A General Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

[

Find £ and n as small as possible such that Riarget = /7.

[

Find a code €[n, k], which can be linear, nonlinear or even randomly generated.

[

Find the performance curve py = foasic (¥s) of the code €[n, k], where p, is the
BER and vy, £ E,/Np in dB.

From the performance curve, find the required E,/Ny to achieve the target BER.
That iS, find Ytarget such that fbasic(ytarget) < ptarget;

[
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A General Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

@ Find £ and n as small as possible such that Riarget = /7.
@ Find a code %[n, k], which can be linear, nonlinear or even randomly generated.

@ Find the performance curve py = foasic (¥s) of the code €[n, k], where p, is the
BER and vy, £ E,/Np in dB.

@ From the performance curve, find the required E; /Ny to achieve the target BER.
That iS, find Ytarget such that fbasic(ytarget) < ptarget;

@ Find the Shannon limit for the code rate R, denoted by yiim;
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A General Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

@ Find £ and n as small as possible such that Riarget = /7.
@ Find a code %[n, k], which can be linear, nonlinear or even randomly generated.

@ Find the performance curve py = foasic (¥s) of the code €[n, k], where p, is the
BER and vy, £ E,/Np in dB.

@ From the performance curve, find the required E; /Ny to achieve the target BER.
That iS, find Ytarget such that fbasic(ytarget) < ptarget;

@ Find the Shannon limit for the code rate R, denoted by yiim;

@ Determine the encoding memory m by 10log;o(m + 1) = Viarget — Yiim- That is,

Ytarget “¥lim o o o
m=|10""T10— — 11, where [z] stands for the minimum integer greater than or
equal to z;
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A General Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

@ Find £ and n as small as possible such that Riarget = /7.
@ Find a code %[n, k], which can be linear, nonlinear or even randomly generated.

@ Find the performance curve py = foasic (¥s) of the code €[n, k], where p, is the
BER and y;, £ E, /Ny in dB.

@ From the performance curve, find the required E; /Ny to achieve the target BER.
That is, find Yiarger such that foasic(Yearget) < Prarget;

@ Find the Shannon limit for the code rate R, denoted by yiim;

@ Determine the encoding memory m by 10log;o(m + 1) = Viarget — Yiim- That is,
me 107target‘71im _ 1"
equal to z;

@ Take the B-fold Cartesian product of the code %[n, k]? as the basic code. To
approach the Shannon limit, we set nB > 10000.

, Where [z] stands for the minimum integer greater than or
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A eral Procedure to Design BMST

Given a target code rate Riarget and a target BER piareer, the general procedure
for designing a BMST system to approach the Shannon limit is as follows.

@ Find £ and n as small as possible such that Riarget = /7.

@ Find a code €[n, k], which can be linear, nonlinear or even randomly generated.

@ Find the performance curve p, = fuasic (¥5) of the code €[n, k], where p; is the
BER and vy, £ E,/Np in dB.

@ From the performance curve, find the required E; /Ny to achieve the target BER.
That is, find Yiarger such that foasic(Yearget) < Prarget;

@ Find the Shannon limit for the code rate R, denoted by yiim;

@ Determine the encoding memory m by 10log;o(m + 1) = Viarget — Yiim- That is,
me loycargermm _ 1"
equal to z;

@ Take the B-fold Cartesian product of the code €[n, k]? as the basic code. To
approach the Shannon limit, we set nB > 10000.

, Where [z] stands for the minimum integer greater than or

@ Generate m + 1 interleavers randomly.
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A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed

in the table.
1 .
Ptarget 3x107®  107° 10715 Huo - Shemon imiof e 11"
Ytarget (dB) 5.78 9.59  14.99 i
Yiim (dB) 0.19 0.19 0.19
Gap (dB) 6.59 9.40  14.80
m 3 8 30 : i ;

6 7 8 $‘? 1‘0 1‘1 12 1’3 1‘4 15 16
E,/N(dB)

Figure: The basic code is the 5000-fold Cartesian product of the

repetition code [2,1]°090. The system encodes L = 100000 sub-blocks

of data and the iterative sliding-window decoding algorithm with

Imax = 18.

Xiao Ma (SYSU)

Block Markov Superposition Transmission Shenzhen, March, 2014



A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed

in the table.
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Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2,1]°090. The system encodes L = 100000 sub-blocks

o L
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of data and the iterative sliding-window decoding algorithm with

Imax = 18.
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A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed

in the table.
10°
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10 —RCR1]
Prarget 3x107% 107>  107'% fw° ——RC21f* m=3,d=3
10" -©-RC[2,1f°% m=3,d=9|
Yearget (dB) 5.78 9.59 14.99 10" - - ~lower bound form =
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Figure: The basic code is the 5000-fold Cartesian product of the

repetition code [2,1]°090. The system encodes L = 100000 sub-blocks

of data and the iterative sliding-window decoding algorithm with

Imax = 18.
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A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed

in the table.
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Figure: The basic code is the 5000-fold Cartesian product of the

repetition code [2,1]°090. The system encodes L = 100000 sub-blocks

of data and the iterative sliding-window decoding algorithm with

Imax = 18.

Block Markov Superposition Transmission Shenzhen, March, 2014 62 / 104



A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed
in the table.
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Figure: The basic code is the 5000-fold Cartesian product of the

repetition code [2,1]°090. The system encodes L = 100000 sub-blocks

of data and the iterative sliding-window decoding algorithm with

Imax = 18.

Block Markov Superposition Transmission

Shenzhen, March, 2014 63 / 104



A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed

in the table.
10° TR
10" i
10° q
10° 1
10" 1
10° . .
10° +["="="Shannon limit of rate 1/2
107 —RC[2.1]
10° —o—RC[2.1f" m=3,d=3
-3 -5 -15 & .. |- -RC2,1f"% m=3,d=9
Ptarget 3x10 10 10 @ 10,]5. —8—RC[2,1f°® m=8,d=8
- - -lower bound form=3
Yearget (dB) 5.78 9.59 14.99 107 |- - -lower bound form= 8
10 - - ~lower bound form = 30
Yiim (dB) 0.19 0.19 0.19 10
14
Gap (dB) 6.59 9.40 14.80 10
10
m 3 8 30 LOVE S
10715 b il L
-1 0 1 2 3 4 9 10 11 12 13 14 15 16

6 7 8
E,/N(dB)

Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2,1]°090. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with

Imax = 18.
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A Construction Example

@ For a target code rate Riarget = 0.5 and different target BERS piarget, the repetition code
[2,1](k = 1,n = 2) with 0 —» 00 and 1 — 11 is chosen.

@ The encoding memories required to approach the Shannon limit using the BMST of RC [2,1]5 is listed

in the table.
0105(9) 48 - =Shannon limit of rate 1/2
|l—Rc21
| —e—RC[2,1f°® m=3,d=3
N N 7 {-®-RC21f" m=3,d=9
Ptarget 3x1073 107° 10715 {=8=RC[21/°C m=8,d=8
{—2—RC[2,17°% m=30, d= 60
Yearget (dB) 5.78 9.59 14.99 10" ~lower bound form =3
e ‘ ~lower bound form=8
Yiim (dB) 0.19 019  0.19 107 e bound om0
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Gap (dB) 6.59 9.40 14.80 107
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ol il v PR | L i
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Xiao Ma (SYSU)

° EZINO(EB)
Figure: The basic code is the 5000-fold Cartesian product of the
repetition code [2,1]°090. The system encodes L = 100000 sub-blocks
of data and the iterative sliding-window decoding algorithm with

Imax = 18.
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Outline

© BMST with High-order Modulations
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BMST Can also Combine with High-order Modulations

L wm Lo
+
L wm L m |
+
Low | w ]
B*&SK B*iSK 8-PSK

Figure: The BMST system with 8-PSK.
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- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
10" % s mg -e-CC, k=5500,n=11004,m= 1}
e us : : :
102 ez 1
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-3 ‘\
w 10k a 4
\\
) R
10 " (1 * 4
i \
i ]
-5 (B} AN
10 B N q
s
6 :\ ! L L L L L L ‘\ L L

0o 1 2 3 9 10 11 12 13 14

6 7 8
E, /N (dB)
Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels

10 T — j— . ey
- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
10" %> -e-CC, k=5500,n=11004,m= 1l
e -0 Lower bound form= 1
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-3 ‘\
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° \b\
10_4’ (1 * 4
i \
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B ° ‘s
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels

10 T : : " . . ey
- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
10" %> -e-CC, k=5500,n=11004,m= 1l
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels

10 T T : : : : ey
- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
1072 ~me -e-CC, k=5500,n=11004,m= 11l
-8-CC, k=5500,n=11004,m= 2,
——BMST-BICM, m=1,d=3
102k -0 Lower bound form= 1
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels

10 — e
- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
10> mg -e-CC, k=5500,n=11004,m= 1}
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels

- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
-e-CC, k=5500,n=11004,m= 1Y
-8-CC, k=5500,n=11004,m= 2,
-4-CC, k=5500,n=11004,m= 3
——BMST-BICM, m=1,d=3 |
—e—BMST-BICM, m=2,d=5
o Lower bound form=1

~a Lower bound form= 2

A Lower bound form= 3

N I I I

9 10 11 12 13 14

6 7 8
E, /N (dB)
Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the

decoding delays are specified in the legends.
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BMST with 8-PSK over AWGN channels

- - =-Shannon limit, unconstraint
----Shannon limit, 8-PSK
-e-CC, k=5500,n=11004,m= 1Y
-8-CC, k=5500,n=11004,m= 2,
-4-CC, k=5500,n=11004,m= 3
——BMST-BICM, m=1,d=3
—e—BMST-BICM, m=2,d=5
——BMST-BICM, m=3,d=7
o Lower bound form=1

v.| = Lower bound form= 2

RO

Sy A Lower bound form= 3
\

A\\‘l\
R,
10°k A 3
‘\\\0
R
10_6 Il Il \\\ Al Il Il Il Il Il
0 6 7 8 9 10 11 12 13 14
E/N(dB)

Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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r Rayleigh fading channels

10 7 7 : : , . . :
=-=-Shannon limit, unconstraint
“|'="=Shannon limit, 8-PSK
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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r Rayleigh fading channels

10 7 7 : : , . . :
=-=-Shannon limit, unconstraint
“|'="=Shannon limit, 8-PSK
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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r Rayleigh fading channels

10 7 7 : : , . . :
=-=-Shannon limit, unconstraint
“|'="=Shannon limit, 8-PSK
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels

10 : —
=-=-Shannon limit, unconstraint
“|'="=Shannon limit, 8-PSK
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels

“|-=-=-Shannon limit, unconstraint
“|'="=Shannon limit, 8-PSK
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the

encoding memories and the decoding delays are specified in the legends.
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BMST with 8-PSK over Rayleigh fading channels

=-=-Shannon limit, unconstraint
----Shannon limit, 8-PSK
-e-CC, k=5500,n=11004,m= 1Y
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D2,1+ D + D?] with k£ = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over block Rayleigh
fading channels with coherence period B = 10. The system encodes L = 1000 sub-blocks
of data and the iterative sliding-window decoding algorithm is performed, where the
encoding memories and the decoding delays are specified in the legends.
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Outline

© BMST with Continuous phase modulation (CPM)

Xiao Ma (SYSU) Block Markov Superposition Transmission Shenzhen, March, 2014



BMST with Continuous phase modulation (CPM)
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Figure: The BMST system with MSK.
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BMST with MSK

10 . r .

- = Shnnon limit of rate 1/2 &t
- - -CC, k=10000,n = 20004, m = 0[]

d
.

10°— : : ‘ : ‘ ‘ :
0 ! 2 Eb/Nﬁ(dB)
Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with MSK
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and

n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with MSK

: : T
- = Shnnon limit of rate 1/2
- =-CC, k=10000,n=20004,m= 0
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and

n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with MSK

: : T
- = Shnnon limit of rate 1/2
- =-CC, k=10000,n=20004,m= 0
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and

n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with MSK

: : T
- = Shnnon limit of rate 1/2
- =-CC, k=10000,n=20004,m= 0
-8 -CC, k=10000,n=20004,m=1
- & -CC, k=10000,n=20004,m= 2
—6—BMST-NRMSK, m=1
—a—BMST-NRMSK, m=2

© lower bound form=1

= lower bound form= 2

3

o E

=)
~
©

Eb/Nﬁ(dB)
Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and

n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with MSK
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- = Shnnon limit of rate 1/2
- =-CC, k=10000,n=20004,m= 0
-8 -CC, k=10000,n=20004,m=1
- & -CC, k=10000,n=20004,m= 2
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and

n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with MSK
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- = Shnnon limit of rate 1/2
- =-CC, k=10000,n=20004,m= 0
-8 -CC, k=10000,n=20004,m=1
- & -CC, k=10000,n=20004,m= 2
-4 -CC, k=10000,n = 20004,m= 3
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Figure: The basic code is a terminated 4-state (2, 1,2) convolutional code defined by the
polynomial generator matrix G(D) = [1+ D?,1+ D + D?] with k£ = 10000 and

n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and I,,.x = 18 is performed, where the
encoding memories are specified in the legends.
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BMST with Spacial Modulation (SM)
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Figure: The spacial modulation with 4 transmitter antennas and 4 receiver antennas
using BPSK modulation. Only one antenna is active for each transmission.
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BMST with Spacial Modulation over Rayleigh fading

channel
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial
generator matrix G(D) =[1+ D?,1+ D + D?] with k = 7000 and n = 14004. Signals are transmitted using
BPSK with 4 transmitter antennas and 4 receiver antennas over Rayleigh fading channels. Only one antenna is
active for each BPSK symbol. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with I,,,x = 18 is performed.
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Conclusions

Conclusions

@ We presented a new method for constructing long codes from short codes;

@ The encoding process can be as fast as the short code, while the decoding
has a fixed but tunable delay.

@ With an iterative sliding-window decoding algorithm, the performance of
BMST can approach the derived lower bound in low error rate region;

@ This scheme can be generalized, for example, to non-binary codes, lattice
codes, and so on.
@ In principle, any code can be the basic code as long as
@ it is defined over a group (but not necessarily group code; (This is required by
the superposition before transmission).
@ it has an efficient encoding algorithm;
@ it has an exact (or approximated) soft-in-soft-out (SISO) decoding algorithm.
@ The BMST scheme is easy to combine with high-order modulation,
continuous phase modulation (CPM), and even spacial modulation (SM) etc.
and has a good performance.
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