BATS Codes: Achieving the Capacity of Networks with Packet Loss

Shenghao Yang

Institute for Interdisplinary Information Sciences
Tsinghua University

March 6, 2014, Sino-German Workshop

Joint work with Raymond W. Yeung (INC, CUHK)

Achievable Rates

Both links have a packet loss rate 0.2.

The capacity of this network is 0.8.

Intermediate	End-to-End	Maximum Rate
forwarding	retransmission	0.64
forwarding	fountain codes	0.64

Achievable Rates

Both links have a packet loss rate 0.2.

The capacity of this network is 0.8.

Intermediate	End-to-End	Maximum Rate	
forwarding	retransmission	0.64	
forwarding	fountain codes	0.64	
network coding	random linear codes	0.8	

Achievable Rates: *n*-hop Line Network

All links have a packet loss rate 0.2.

_	Intermediate Operation	Maximum Rate
-	forwarding	$0.8^n \rightarrow 0, \ n \rightarrow \infty$
	network coding	8.0

Complexity of Linear Network Coding

- T: length of a packet; K: number of packets
- Encoding: $\mathcal{O}(TK)$ per packet.
- Decoding: $\mathcal{O}(K^2 + TK)$ per packet.
- Network coding: $\mathcal{O}(TK)$ per packet. Buffer K packets.

Batched Sparse (BATS) Codes

[YY11] S. Yang and R. W. Yeung. Coding for a network coded fountain. ISIT 2011, Saint Petersburg, Russia, 2011.

Encoding of BATS Code: Outer Code

- Apply a "matrix fountain code" at the source node:
 - **1** Obtain a degree d by sampling a degree distribution Ψ .
 - 2 Pick *d* distinct input packets randomly.
 - \odot Generate a batch of M coded packets using the d packets.
- Transmit the batches sequentially.

Encoding of BATS Code: Inner Code

- The batches traverse the network.
- Encoding at the intermediate nodes forms the inner code.
- Linear network coding is applied in a causal manner within a batch.

Belief Propagation Decoding

- Find a check node i with degree_i = rank($\mathbf{G}_i\mathbf{H}_i$).
- ② Decode the *i*th batch.
- Update the decoding graph. Repeat 1).

The linear equation associated with a check node: $\mathbf{Y}_i = \mathbf{B}_i \mathbf{G}_i \mathbf{H}_i$.

Precoding

- Precoding by a fixed-rate erasure correction code.
- ullet The BATS code recovers $(1-\eta)$ of its input packets.

[Shokr06] A. Shokrollahi, Raptor codes, IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 25512567, Jun. 2006.

Complexity of Sequential Scheduling

Source node	encoding	$\mathcal{O}(TM)$ per packet	
Destination no	de decoding	$\mathcal{O}(M^2 + TM)$ per packet	
Intermediate Node	buffer	$\mathcal{O}(TM)$	
	network coding	$\mathcal{O}(\mathit{TM})$ per packet	

T: length of a packet

K: number of packets

M: batch size

Finite-Length Design

- For given a rank distribution of transfer matrices, BP decoding is asymptotically error free for BATS codes with very small coding overheads.
- For short block length, e.g., several thousands packets, the coding overhead for BP decoding can be large.

Finite-Length Design

- For given a rank distribution of transfer matrices, BP decoding is asymptotically error free for BATS codes with very small coding overheads.
- For short block length, e.g., several thousands packets, the coding overhead for BP decoding can be large.
- Inactivation decoding can be used to reduce the overhead when the block length is within several 10 thousands packets:
 - BP decoding stops when there is no decodable batch
 - Assign an undecoded input packet as decoded (inactive) to restart BP decoding
 - Alleviates the degree distribution optimization problem for files up to several ten megabytes.

Inactivation Decoding

BATS codes with M = 32 and q = 256.

K	coding overhead		inactivation no.			
	average	max	min	average	max	min
1600	2.04	16	0	94.0	119	72
8000	6.30	77	0	215.5	268	179
16000	26.58	1089	0	352.2	379	302

Tradeoff

- M = 1: BATS codes degenerate to Raptor codes.
 - Low complexity
 - No benefit of network coding
- M = K and degree $\equiv K$: BATS codes becomes RLNC.
 - High complexity
 - Full benefit of network coding.
- Exist parameters with moderate values that give very good performance

Tradeoff for Line Networks

- Packet loss rate 0.2.
- Node s encodes K packets using a BATS code.
- Node *u* caches only one batch.
- Node t sends one feedback after decoding.

- Sender/receiver: a laptop with open source Atheros wireless drivers.
- Relay: one wireless router with Atheros chipset running OpenWrt (about 150HKD/20USD)
- WiFi 802.11 b/g/n at 2.4GHz
- Sender's rate is set to 1 Mb/s to reduce the effect of the router's low computation power.

Compare with TCP

	Average rate (Kb/s)
BATS w/ recoding	592.86
BATS w/o recoding	530.65
TCP (normal 802.11)	420.33

Application: Satellite Communication

Summary

- BATS codes provide a digital fountain solution with linear network coding:
 - Outer code at the source node is a matrix fountain code.
 - Linear network coding at the intermediate nodes forms the inner code.
 - Prevents BOTH packet loss and delay from accumulating along the way.
- The more hops between the source node and the sink node, the larger the benefit.